Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.4.372

Identification of Botrytis cinerea, the Cause of Post-Harvest Gray Mold on Broccoli in Korea  

Aktaruzzaman, Md. (East Coast Life Science Institute)
Afroz, Tania (Department of Plant Science, Gangneung-Wonju National University)
Hong, Sae-Jin (Department of Plant Science, Gangneung-Wonju National University)
Kim, Byung-Sup (Department of Plant Science, Gangneung-Wonju National University)
Publication Information
Research in Plant Disease / v.23, no.4, 2017 , pp. 372-378 More about this Journal
Abstract
In this study, we identified the causative agent of post-harvest gray mold on broccoli that was stored on a farmers' cooperative in Pyeongchang, Gangwon Province, South Korea, in September 2016. The incidence of gray mold on broccoli was 10-30% after 3-5 weeks of storage at $3^{\circ}C$. Symptoms included brownish curd and gray-to-dark mycelia with abundant conidia on the infected broccoli curds. The fungus was isolated from infected fruit and cultured on potato dextrose agar. To identify the fungus, we examined the morphological characteristics and sequenced the rDNA of the fungus and confirmed its pathogenicity according to Koch's postulates. The results of the morphological examination, pathogenicity test, and sequencing of the 5.8S rDNA of the internal transcribed spacer regions (ITS1 and ITS4) and three nuclear protein-coding genes, G3PDH, HSP60, and RPB2, revealed that the causal agent of the post-harvest gray mold on broccoli was Botrytis cinerea. To our knowledge, this is the first report of post-harvest gray mold on broccoli in Korea.
Keywords
Botrytis cinerea; Gray mold; Post-harvest disease; Storage of broccoli;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
2 Tao, Y., Zeng, F., Ho, H., Wei, J., Wu, Y., Yang, L. and He, Y. 2011. Pythium vexans causing stem rot of Dendrobium in Yunnan Province, China. J. Phytopathol. 159: 255-259.   DOI
3 Toivonen, P. M. A. and Forney, C. 2004. The commercial storage of fruits, vegetables and florist and nursery stock. In: USDA, ARS Agriculture Handbook No. 66, eds. K. C. Gross, C. Y. Wang, and M. Saltveit. Beltsville, MD.
4 White, T. J., Bruns, T. D., Lee, S. B. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsk and T. J. White, pp.315-322. Academic Press, New York.
5 Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-680.   DOI
6 Yu, R. H., Gao, J., Wang, J. G. and Wang, X. 2011. First report of Botrytis leaf blight and fruit rot on Schisandra chinensis caused by Botrytis cinerea in China. Plant Dis. 95: 769.
7 Zhang, Y. and Tang, L. 2007. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol. Sin. 28: 1343-1354.   DOI
8 Zhang, Z. Y. 2006. Flora Fungorum Sinicorum. Vol. 26: Botrytis Ramularia. Science Press, Beijing.
9 Zhou, Y. J., Zhang, J., Wang, X. D., Yang, L., Jiang, D. H., Li, G. Q., Hsiang, T. and Zhuang, W. Y. 2014. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China. Mycologia 106: 43-56.   DOI
10 Aktaruzzaman, M., Afroz, T., Kim, B. S. and Lee, Y. G. 2017a. Occurrence of postharvest gray mold rot of sweet cherry due to Botrytis cinerea in Korea. J. Plant Dis. Prot. 124: 93-96.   DOI
11 Aktaruzzaman, M., Lee, Y. G., Afroz, T. and Kim, B. S. 2017b. The Occurrence of postharvest gray-mold rot of sweet persimmon caused by Botrytis cinerea in Korea. Eur. J. Plant Pathol. doi: 10.1007/s10658-017-1254-1. (In press)   DOI
12 Aktaruzzaman, M., Kim, J. Y., Xu, S. J. and Kim, B. S. 2014. First report of postharvest gray mold rot on carrot caused by Botrytis cinerea in Korea. Res. Plant Dis. 20: 129-131.   DOI
13 Bahadoran, Z., Mirmiran, P. and Azizi, F. 2013. Potential efficacy of broccoli sprouts as a unique supplement for management of type 2 diabetes and its complications. J. Med. Food 16: 375-382.   DOI
14 Barnett, H. L. and Hunter, B. B. 1972. Illustrated genera of imperfect fungi. Burgess Publishing Company, Minneapolis.
15 Beever, R. E. and Weeds, P. L. 2007. Taxonomy and genetic variation of Botrytis and Botryotinia. In: Botrytis: Biology, Pathology and Control, eds. by Y. Elad, B. Williamson, P. Tudzynski and N. Delen, pp. 29-48. Kluwer Academic Publishers, Dordrecht, The Netherlands.
16 Conaway, C. C., Getachun, S. M., Liebes, L. L., Pusateri, D. J., Tophan, D. K., Botero-Omary, M. and Chung, F. L. 2000. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr. Cancer 38: 168-178.   DOI
17 Dean, R., van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant. Pathol. 13: 414-430.   DOI
18 Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Kew, Commonwealth Mycological Institute.
19 Droby, S. and Lichter, A. 2004. Post-harvest Botrytis infection: etiology, development and management. In: Botrytis: Biology, Pathology and Control, eds. by Y. Elad, B. Williamson, P. Tudzynski and N. Delen, pp. 349-367. Kluwer Academic Publishers, The Netherlands.
20 Elad, Y. 1997. Effect of filtration of solar light on the production of conidia by field isolates of Botrytis cinerea and on several diseases of greenhouse-grown vegetables. Crop Prot. 16: 635-642.   DOI
21 Ellis, M. B. and Waller, J. M. 1974. Sclerotinia fuckeliana (Conidial State: Botrytis cinerea). CMI Descriptions of Pathogenic Fungi and Bacteria. No. 431. England Commonwealth Mycological Institute.
22 Heber, D., Li, Z., Garcia-loret, M., Wong, A. M., Lee, T. Y., Thames, G., Krak, M., Zhang, Y. and Nel, A. 2014. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Func. 5: 35-41.   DOI
23 FAO. 2014. Food and Agriculture Organization of the United Nations, FAOSTAT, FAO Statistical Databases. URL http://www.fao.org/waicent/portal/statistics_en.asp/
24 Farr, D. F. and Rossman, A. Y. 2017. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. URL http://nt.ars-grin.gov/fungaldatabases/ [25 September 2017]
25 Fernandez-Leon, M. F., Fernandez-Leon, A. M., Lozano, M., Ayuso, M. C. and Gonzalez-Gomez, D. 2013. Different postharvest strategies to preserve broccoli quality during storage and shelf life: Controlled atmosphere and 1-MCP. Food Chem. 138: 564-573.   DOI
26 Fillinger, S. and Elad, Y. 2015. Botrytis - the Fungus, the pathogen and its management in Agricultural Systems. Springer.
27 Grant-Downton, R. T., Terhem, R. B., Kapralov, M. V., Mehdi, S., Rodriguez-Enriquez, M. J., Gurr, S. J., van Kan, J. A. L. and Dewey, F. M. 2014. A Novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis. PLoS One 9: e89272.   DOI
28 Jarvis, W. R. 1980. Taxonomy. In: The Biology of Botrytis, eds. by J. R. Coley-Smith, K. Verhoeff, W. R. Jarvis, pp. 1-18. Academic Press, London.
29 Kwon, J. H., Cheon, M. G., Choi, O. and Kim, J. 2011. First report of Botrytis cinerea as a postharvest pathogen of blueberry in Korea. Microbiology 39: 52-55.
30 Li, X. P., Kerrigan, J., Chai, W. X. and Schnabel, G. 2012. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104: 650-658.   DOI
31 Romanazzi, G., Smilanick, J. L., Feliziani, E. and Droby, S. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest. Biol. Technol. 113: 69-76.   DOI
32 Lin, C. H. and Chang, C. Y. 2005. Textural change and antioxidant properties of broccoli under different cooking treatments. Food Chem. 90: 9-15.   DOI
33 Lorenzini, M. and Zapparoli, G. 2014. An isolate morphologically and phylogenetically distinct from Botrytis cinerea obtained from withered grapes possibly represents a new species of Botrytis. Plant Path. 63: 1326-1335.   DOI
34 Naguib, A. El-M. M., El-Baz, F. K., Salama, Z. A., Hanaa, H. A. E. B., Ali, H. F. and Gaafar, A. A. 2012. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica olaracea, var. Italica) as antioxidants in response to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sci. 11: 135-142.
35 Nielsen, K., Yohalem, D. S. and Funck, J. D. 2002. PCR detection and RFLP differentiation of Botrytis species associated with neck rot of onion. Plant Dis. 86: 682-686.   DOI
36 Romanazzi, G. and Feliziani, E. 2014. Botrytis cinerea. In: Postharvest Decay: Control Strategies, ed. by S. Bautista-Banos, pp. 131-146. Elsevier.
37 Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
38 Staats, M., van Baarlen, P., Schouten, A., van Kan, J. A. L. and Bakker, F. T. 2007. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genet. Biol. 44: 52-63.   DOI
39 Staats, M., van Baarlen, P. and van Kan, J. A. L. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol. 22: 333-346.