• Title/Summary/Keyword: quorum sensing

Search Result 148, Processing Time 0.034 seconds

Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi (고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과)

  • Kim, Cheol-Jin;Park, Hyung-Yeon;Kim, Jae-Eun;Park, Hee-Jin;Lee, Bon-Su;Choi, Yu-Sang;Lee, Joon-Hee;Yoon, Je-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2009
  • The inhibitors against Vibrio harveyi quorum sensing (QS) signaling were developed by modifying the molecular structure of the major signal, N-3-hydroxybutanoyl-L-homoserine lactone (3-OH-$C_4$-HSL). A series of structural derivatives, N-(3-hydroxysulfonyl)-L-homoserine lactones (HSHLs) were synthesized by the solid-phase organic synthesis method. The in vivo QS inhibition by these compounds was measured by a bioassay system using the V. harveyi bioluminescence, and all showed significant inhibitory effects. To analyze the interaction between these compounds and LuxN, a 3-OH-$C_4$-HSL receptor protein of V. harveyi, we tentatively determined the putative signal binding domain of LuxN based on the sequence homology with other acyl-HSL binding proteins, and predicted the partial 3-D structure of the putative signal binding domain of LuxN by using ORCHESTRA program, and further estimated the binding poses and energies (docking scores) of 3-OH-$C_4$-HSL and HSHLs within the domain. In comparison of the result from this modeling study with that of in vivo bioassay, we suggest that the in silica interpretation of the interaction between ligands and their receptor proteins can be a valuable way to develop better competitive inhibitors, especially in the case that the structural information of the protein is limited.

Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa (녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석)

  • Park, Su-Jin;Kim, Soo-Kyoung;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.180-186
    • /
    • 2012
  • Pseudomonas aeruginosa, a Gram-negative bacterium, is an ubiquitous and opportunistic human pathogen, which expresses many virulence factors through quorum sensing (QS) regulation. QscR, one of the QS signal receptors of P. aeruginosa, has unique features that make it possible to distinguish QscR from other QS receptors. In the present study, we focused on amino acid residues responsible for such a broad signal specificity of QscR. Thus we constructed mutant QscRs: $QscR_{T72I}$, $QscR_{R132M}$, and $QscR_{T140I}$ by substituting $72^{nd}$ threonine, $132^{nd}$ arginine, and $140^{th}$ threonine residues with isoleucine, methionine, and isoleucine, respectively by site-directed mutagenesis. When we examined the activity of these mutant QscRs, $QscR_{R132M}$ failed to respond to N-3-oxododecanoyl homoserine lactone (3OC12-HSL), but $QscR_{T72I}$ and $QscR_{T140I}$ remained the ability to respond to 3OC12-HSL despite much reduction of the sensitivity. When we treated a variety of acyl-HSLs with different structure, $QscR_{T72I}$ and $QscR_{T140I}$ showed better responsiveness to N-decanoyl HSL (C10-HSL) or N-dodecanoyl HSL (C12-HSL) that has no oxo-moiety at $3^{rd}$ carbon of acyl group than to 3OC12-HSL, and $QscR_{R132M}$ showed no responsiveness to any acyl-HSLs tested here. In addition, $QscR_{T72I}$ and $QscR_{T140I}$ were inhibited by 5f, a QscR inhibitor as similarly as wild type QscR was. These results suggest that while the $130^{th}$ arginine is crucial in both activity and acyl-HSL binding of QscR, the $72^{nd}$ and $140^{th}$ threonines are important in the activity, but they are little responsible for the discrimination of acyl-HSLs or competitive inhibitor.

Examination of Antimicrobial Activity by Phaeobacter inhibens KJ-2 Isolated from a Marine Organism (해양 생물에서 분리된 Phaeobacter inhibens KJ-2의 항균 활성)

  • Kim, Yun-Beom;Kim, Dong-Hwi;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1161-1167
    • /
    • 2017
  • In order to find a new antimicrobial bacterium, we performed screening for antimicrobial activity of bacteria isolated from the eggs of a sea hare. The newly identified strain was designated as Phaeobacter inhibens KJ-2, based on the biochemical characterization and 16S rRNA gene sequence analysis. A colony of P. inhibens KJ-2 showed a circular and ruler-like smooth form at the edge, and a brown color. However, when maintained with a longer incubation time, its coloring was transformed into dark brown. From the result of SEM, P. inhibens KJ-2 is a bacillus which has a length of $0.8{\sim}1.0{\mu}m$ and a width of $0.4{\sim}0.6{\mu}m$. The optimal growth and antimicrobial activity were observed by shaking the culture for 24 hr at $20^{\circ}C$, which showed potent activity against pathogenic bacteria including Vibrio logei, Vibrio campbellii, Vibrio mimicus, Vibrio vulnificus, and Vibrio salmonicida. The antimicrobial activity was proportional to the amount of produced acylated homoserine lactones (AHLs). Therefore, we suggest that production of antimicrobial materials from P. inhibens KJ-2 is regulated by Quorum sensing (QS).

Analysis of Quorum Sensing-Related Phenotypes of Pseudomonas aeruginosa Clinical Isolates (녹농균 임상균주의 쿼럼 센싱 관련 표현형 분석)

  • Jung, Kyung-Ju;Choi, Yu-Sang;Ha, Chang-Wan;Shin, Jeong-Hwan;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.240-247
    • /
    • 2010
  • Pseudomonas aeruginosa is a Gram (-) opportunistic human pathogen causing a wide variety of infections on lung, urinary tract, eyes, and burn wound sites and quorum sensing (QS), a cell density-sensing mechanism plays an essential role in Pseudomonas pathogenesis. In order to investigate the importance of QS in the Pseudomonas infections of Korean patients, we isolated 189 clinical strains of P. aeruginosa from the patients in Pusan Paik Hospital, Busan, South Korea. The QS signal production of these clinical isolates was measured by signal diffusion assay on solid media using reporter strains. While most clinical strains (79.4%) produced the QS signals as similar level as a wild type strain, PAO1 did, where LasR, the initial QS signal sensor-regulator was fully activated, a minority of them (4.2%) produced much less QS signals at the level to which LasR failed to respond. Similarly, while 72.5% of the clinical isolates produced QS signals enough to activate QscR, an another QS signal sensor-regulator, some few of them (9%) produced the QS signals at much lower level where QscR was not activated. For further analysis, we selected 74 clinical strains that were obtained from the patients under suspicion of Pseudomonas infection and investigated the total protease activity that is considered important for virulence. Interestingly, significant portion of them showed very low protease activity (44.6%) or no detectable protease activity (12.2%). When the biofilm-forming ability that is considered very important in chronic infection was examined, most isolates showed lower biofilm-forming activity than PAO1. Similarly, significant portion of clinical isolates showed reduced motility (reduced swarming activity in 51.4% and reduced twitching activity in 41.9%), or non-detectable motility (swarming-negative in 28.4% and twitching-negative in 28.4%). Our result showed that the clinical isolates that produced QS signals at the similar level to wild type could have significantly reduced activities in the protease production, biofilm formation, and motility, and some clinical isolates had unique patterns of motility, biofilm formation, and protease production that are not correlated to their QS activity.

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

A target-specific bioassay for screening of bioactive AHL-analogues from natural products

  • Kim, Young-Hee;Kim, Jung-Sun;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.411-414
    • /
    • 2002
  • Acylated homoserine lactones (AHLs) are membrane-permeant signal molecules responsible for biofilm formation of gram-negative bacteria via a unique mechanism known as quorum sensing. A target specific bioassay employing the AHL-responsive Agrobacterium tumefaciens reporter strain has been developed to identify new AHL-like compounds from natural products, which could be developed into antifouling compounds. By varying the X-gal concentration, incubation time, solvent for sample preparation and the sample loading procedure, it was possible to detect low level AHLs up to $10^1nM$. The length of the acyl chain of the AHLs was found to affect the sensitivity of this bioassay.

  • PDF

Post Genomic Approaches to Nodulation in Soybean

  • Hwang, Cheol-Ho;Lim, Chae-Woo
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • An interaction between Legumes and Rhizobia establishes a symbiotic new organ, the nodule that supports atmospheric nitrogen fIxation. The specific communications between the microbes and legume plants are necessary for both nodulation and nitrogen fixation. Through genetic and biochemical analyses several genes playing pivotal roles in nodulation had been identified to be a receptor kinase like CALVATAl involved signal transduction for development. This emphasizes peptides as signals to be transmitted for a short or long distance transport for nodulation. In addition, a quorum sensing in rhizobia has become a focus as counterpart signal. In an attempt to reveal proteins factors and signaling molecules acting on nodulation, proteome analyses of nodule and the proteins in apoplast upon communication between Legumes and Rhizobia were performed.

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

  • Jung, Sung-Hoon;Kim, Tae-Geon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2008
  • This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave its implementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various' parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for optimization.

Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria

  • Ge, Jingping;Kang, Jie;Ping, Wenxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1341-1348
    • /
    • 2019
  • Acetic acid is indirectly involved in cell center metabolism, and acetic acid metabolism is the core of central metabolism, affecting and regulating the production of bacteriocin. Bacteriocin is a natural food preservative that has been used in the meat and dairy industries and winemaking. In this paper, the effects of acetic acid on bacteriocin produced by Gram-positive bacteria were reviewed. It was found that acetic acid in the undissociated state can diffuse freely through the hydrophobic layer of the membrane and dissociate, affecting the production, yield, and activity of bacteriocin. In particular, the effect of acetic acid on cell membranes is summarized. The link between acetic acid metabolism, quorum sensing, and bacteriocin production mechanisms is also highlighted.