Browse > Article
http://dx.doi.org/10.4014/jmb.1905.05060

Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria  

Ge, Jingping (Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University)
Kang, Jie (Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University)
Ping, Wenxiang (Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.9, 2019 , pp. 1341-1348 More about this Journal
Abstract
Acetic acid is indirectly involved in cell center metabolism, and acetic acid metabolism is the core of central metabolism, affecting and regulating the production of bacteriocin. Bacteriocin is a natural food preservative that has been used in the meat and dairy industries and winemaking. In this paper, the effects of acetic acid on bacteriocin produced by Gram-positive bacteria were reviewed. It was found that acetic acid in the undissociated state can diffuse freely through the hydrophobic layer of the membrane and dissociate, affecting the production, yield, and activity of bacteriocin. In particular, the effect of acetic acid on cell membranes is summarized. The link between acetic acid metabolism, quorum sensing, and bacteriocin production mechanisms is also highlighted.
Keywords
Bacteriocin; acetic acid; gram-positive bacteria; acetic acid metabolism; signal molecule;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Johnson EM, Jung DY, Jin DY, Jayabalan DR, Yang DSH, Suh JW. 2018. Bacteriocins as food preservatives: challenges and emerging horizons. Crit. Rev. Food. Sci. 58: 2743-2767.   DOI
2 Abbasiliasi S, Ramanan RN, Ibrahim TAT, Mustafa S, Mohamad R, Daud HHM, et al. 2014. Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus paracaseiLA07, a strain isolated from Budu. Biotechnol. Biotechnol. Equip. 25: 2652-2657.   DOI
3 De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LM. 2005. Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Grampositive and Gram-negative bacteria. Int. J. Food Microbiol. 105: 433-444.   DOI
4 Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, et al. 2018. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB. Express. 8: 10.   DOI
5 Agaliya PJ, Jeevaratnam K. 2013. Characterisation of the bacteriocins produced by two probiotic Lactobacillus isolates from idli batter. Ann. Microbiol. 63: 1525-1535.   DOI
6 Embaby AM, Heshmat Y, Hussein A, Marey HS. 2014. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain. Scientific World Journal 2014: 1-16.
7 Lozo J, Vukasinovic M, Strahinic I, Topisirovic L. 2004. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J. Food Prot. 67: 2727-2734.   DOI
8 Nilsson L, Nielsen MK, Ng Y, Gram L. 2002. Role of acetate in production of an autoinducible class iia bacteriocin in Carnobacterium piscicola A9b. Appl. Environ. Microbiol. 68: 2251-2260.   DOI
9 Trcek J. 2014. Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. Ann. Microbiol. 65: 1287-1292.   DOI
10 Khan R, Rukke HV, Ricomini Filho AP, Fimland G, Arntzen MO, Thiede B, et al. 2012. Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J. Bacteriol. 194: 3781-3788.   DOI
11 Kochan TJ, Dawid S. 2013. The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J. Bacteriol. 195: 1561-1572.   DOI
12 Hosein AM, Breidt F, Jr., Smith CE. 2011. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7. Appl. Environ. Microbiol. 77: 889-895.   DOI
13 Cabo ML, Braber AF, Koenraad PM. 2002. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Prot. 65: 1309-1316.   DOI
14 Casal M, Paiva S, Queiros O, Soares-Silva I. 2008. Transport of carboxylic acids in yeasts. FEMS Microbiol. Rev. 32: 974-994.   DOI
15 Mols M, Abee T. 2008. Role of ureolytic activity in Bacillus cereus nitrogen metabolism and acid survival. Appl. Environ. Microbiol. 74: 2370-2378.   DOI
16 Xiao KK, Guo CH, Zhou Y, Maspolim Y, Wang JY, Ng WJ. 2013. Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochem. Eng. J. 75: 1-7.   DOI
17 Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125.   DOI
18 Woo JM, Kim JW, Song JW, Blank LM, Park JB. 2016. Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21(DE3) leads to increase of the fatty acid biotransformation activity. PLoS One 11: e0163265.   DOI
19 Gao C, Zheng Y. 2018. Control of acetic acid metabolism of recombinant Yarrowia lipolytica for efficient succinic acid production. Chin. J. Biotechnol. 34: 389-395.
20 Adachi K, Ohtani K, Kawano M, Singh RP, Yousuf B, Sonomoto K, et al. 2018. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. J. Biosci. Bioeng. 125: 525-531.   DOI
21 Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT. 2015. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS. Microbiol. Lett. 362: 1-7.
22 Fernandez I, Sycz G, Goldbaum FA, Carrica MDC. 2018. Acidic pH triggers the phosphorylation of the response regulator NtrX in alphaproteobacteria. PLoS One 13: e0194486.   DOI
23 Wang J, Hao C, Huang H, Tang W, Zhang J, Wang C. 2018. Acetic acid production by the newly isolated Pseudomonas sp. CSJ-3. Braz. J. Chem. Eng. 35: 1-9.   DOI
24 Peeters SH, de Jonge MI. 2018. For the greater good: Programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169.   DOI
25 Lyon GJ, Novick RP. 2004. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389-1403.   DOI
26 Trcek J, Mira NP, Jarboe LR. 2015. Adaptation and tolerance of bacteria against acetic acid. Appl. Microbiol. Biotechnol. 99: 6215-6229.   DOI
27 Mhatre E, Monterrosa RG, Kovacs AT. 2014. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J. Basic. Microbiol. 54: 616-632.   DOI
28 Mols M, Abee T. 2011. Bacillus cereus responses to acid stress. Environ. Microbiol. 13: 2835-2843.   DOI
29 Stanley NR, Lazazzera BA. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 52: 917-924.   DOI
30 Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, et al. 2016. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol. Lett. 38: 1097-1106.   DOI
31 Novick RP, Geisinger E. 2008. Quorum sensing in Staphylococci. Annu. Rev. Genet. 42: 541-564.   DOI
32 Trcek J, Jernejc K, Matsushita K. 2007. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 11: 627-635.   DOI
33 Tallawi M, Opitz M, Lieleg O. 2017. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater. Sci. 5: 887-900.   DOI
34 Liu L, Wu R, Zhang J, Shang N, Li P. 2017. D-Ribose interferes with quorum sensing to inhibit biofilm formation of Lactobacillus paraplantarum L-ZS9. Front. Microbiol. 8: 1860.   DOI
35 Reck M, Tomasch J, Wagner-Dobler I. 2015. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11: e1005353.   DOI
36 Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM. 2009. Peptide alarmone signalling triggers an autoactive bacteriocin necessary for genetic competence. Mol. Microbiol. 72: 905-917.   DOI
37 Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183: 897-908.   DOI
38 Mashburn-Warren L, Morrison DA, Federle MJ. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78: 589-606.   DOI
39 Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME. 2012. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competencestimulating peptide. J. Biol. Chem. 287: 38449-38459.   DOI
40 Sebert ME, Patel KP, Plotnick M, Weiser JN. 2005. Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J. Bacteriol. 187: 3969-3979.   DOI
41 Monedero V, Revilla-Guarinos A, Zuniga M. 2017. Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv. Appl. Microbiol. 99: 1-51.   DOI
42 Alcantara C, Bauerl C, Revilla-Guarinos A, Perez-Martinez G, Monedero V, Zuniga M. 2016. Peptide and amino acid metabolism is controlled by an OmpR-family response regulator in Lactobacillus casei. Mol. Microbiol. 100: 25-41.   DOI
43 Yi H, Han X, Yang Y, Liu W, Liu H, Zhang Y, et al. 2013. Effect of exogenous factors on bacteriocin production from Lactobacillus paracasei J23 by using a resting cell system. Int. J. Mol. Sci. 14: 24355-24365.   DOI
44 Dufour D, Cordova M, Cvitkovitch DG, Levesque CM. 2011. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol. 193: 6552-6559.   DOI
45 Tan SM, Lee SM, Dykes GA. 2015. Acetic acid induces pHindependent cellular energy depletion in Salmonella enterica. J. Dairy. Sci. 12: 183-189.
46 Md Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB. 2018. Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. Biomed Res. Int. 2018: 5973484.
47 Buch AD, Archana G, Naresh Kumar G. 2010. Broad-hostrange plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525. Appl. Microbiol. Biotechnol. 88: 209-218.   DOI
48 Wang B, Zhang H, Liang D, Hao P, Li Y, Qiao J. 2017. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44. J. Dairy. Sci. 100: 9532-9538.   DOI
49 Akasaka N, Astuti W, Ishii Y, Hidese R, Sakoda H, Fujiwara S. 2015. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration. J. Biosci. Bioeng. 119: 661-668.   DOI
50 Berger M, Berger P, Denamur E, Mellmann A, Dobrindt U. 2018. Core elements of the vegetative replication control of the Inc1 plasmid pO104_90 of Escherichia coli O104:H4 also regulate its transfer frequency. Int. J. Med. Microbiol. 308: 962-968.   DOI
51 Miljkovic M, Lozo J, Mirkovic N, O'Connor PM, Malesevic M, Jovcic B, et al. 2018. Functional characterization of the Lactolisterin BU gene cluster of Lactococcus lactis subsp. lactis BGBU1-4. Front. Microbiol. 9: 2774.   DOI
52 Perlinska A, Grynberg M. 2014. Bacillus anthracis pXO1 plasmid encodes a putative membrane-bound bacteriocin. PeerJ 2: e679.   DOI
53 Maldonado-Barragan A, Caballero-Guerrero B, Lucena-Padros H, Ruiz-Barba JL. 2013. Induction of bacteriocin production by coculture is widespread among plantaricinproducing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol. 33: 40-47.   DOI
54 Ge J, Fang B, Wang Y, Song G, Ping W. 2014. Bacillus subtilis enhances production of Paracin1. 7, a bacteriocin produced by Lactobacillus paracasei HD1-7, isolated from Chinese fermented cabbage. Ann. Microbiol. 64: 1735-1743.   DOI
55 Moreno-Gamez S, Sorg RA, Domenech A, Kjos M, Weissing FJ, van Doorn GS, et al. 2017. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. 8: 854.   DOI
56 Talagrand-Reboul E, Jumas-Bilak E, Lamy B. 2017. The social life of Aeromonas through biofilm and quorum sensing systems. Front. Microbiol. 8: 37.
57 Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, et al. 2017. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 292: 4064-4076.   DOI
58 Kaktcham PM, Temgoua JB, Ngoufack Zambou F, Diaz-Ruiz G, Wacher C, Perez-Chabela ML. 2017. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World. J. Microbiol. Biotechnol. 33: 32.   DOI
59 Malik A, Sumayyah S, Yeh CW, Heng NC. 2016. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett. 363 pii: fnw059.   DOI
60 Lopez-Cuellar MdR, Rodriguez-Hernandez A-I, Chavarria-Hernandez N. 2016. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Equip. 30: 1039-1050.   DOI
61 Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, et al. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173-4179.   DOI
62 Jia FF, Zheng HQ, Sun SR, Pang XH, Liang Y, Shang JC, et al. 2018. Role of luxs in stress tolerance and adhesion ability in Lactobacillus plantarum KLDS1.0391. Biomed. Res. Int. 2018: 4506829.
63 Dobson A, Cotter PD, Ross RP, Hill C. 2012. Bacteriocin production: a probiotic trait? Appl. Environ. Microbiol. 78: 1-6.   DOI
64 Blanchard AE, Liao C, Lu T. 2016. An ecological understanding of quorum sensing-controlled bacteriocin synthesis. Cell. Mol. Bioeng. 9: 443-454.   DOI