녹농균 임상균주의 쿼럼 센싱 관련 표현형 분석

Analysis of Quorum Sensing-Related Phenotypes of Pseudomonas aeruginosa Clinical Isolates

  • 정경주 (부산대학교 약학대학 미생물학 연구실) ;
  • 최유상 (부산대학교 약학대학 미생물학 연구실) ;
  • 하창완 (부산대학교 약학대학 미생물학 연구실) ;
  • 신정환 (인제대학교 의과대학 진단검사의학교실) ;
  • 이준희 (부산대학교 약학대학 미생물학 연구실)
  • Jung, Kyung-Ju (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Choi, Yu-Sang (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Ha, Chang-Wan (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Shin, Jeong-Hwan (Department of Laboratory Medicine, Inje University College of Medicine) ;
  • Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University)
  • 투고 : 2010.05.28
  • 심사 : 2010.08.30
  • 발행 : 2010.09.30

초록

그람음성 간균인 녹농균(Pseudomonas aeruginosa)은 비뇨기, 결막(conjunctiva), 호흡기(respiratory system), 화상부위 등에 광범위하게 감염하며, 병원성의 발현에 세균의 세포밀도 인식기전인 쿼럼 센싱이 매우 중요하다고 알려진 기회감염성 병원균이다. 국내의 환자들에게 감염하는 녹농균에서 쿼럼 센싱의 중요성을 알아보기 위해 부산 백병원의 환자들로부터 189종의 녹농균을 분리 동정하였다. 이 임상 균주들에서 쿼럼 센싱 신호 물질의 발현을 리포터 균주를 이용한 고체 배지 확산법으로 조사하였다. 전체 임상 균주의 79.4%가 녹농균 야생형균주와 비슷하게 쿼럼 센싱 조절의 가장 상위 신호인식-조절단백질인 LasR을 충분히 활성화 시키는 수준으로 쿼럼 신호물질을 생성하였다. 반면 4.2% 정도는 신호물질을 합성하지 못하는 녹농균 돌연변이주와 비슷하게 LasR을 활성화 시키지 못하는 수준으로 쿼럼 신호물질을 생성하였다. 한편, 전체의 72.5%가 또 다른 쿼럼 신호인식-조절 단백질인 QscR을 충분히 활성화 시킬 수 있는 야생형 수준으로 신호물질을 생성한 반면, 9%가 QscR을 활성화 시키지 못하는 수준으로 신호물질을 생성하였다. 임상 균주들 중 특히 녹농균 감염이 의심되는 환자들에게서 유래한 74종을 선정하여 병독인자로 중요한 프로테아제 활성을 조사한 결과, 44.6%에서 프로테아제 활성이 낮아져 있었으며, 12.2%에서는 프로테아제 활성이 관찰되지 않았다. 같은 균들을 대상으로 만성감염에 중요한 역할을 하는 것으로 알려진 생물막 형성 능력을 확인하였을 때, 대부분이 야생형보다 생물막 형성능력이 떨어져 있었다. 또한 이 균주들의 운동성을 살펴본 결과 많은 균주들이 swarming과 twitching 능력이 저해되어 있었으며(전체의 51.4%가 reduced swarming activity, 전체의 41.9%가 reduced twitching activity), 관찰되지 않는 수준의 균주도 상당부분 있었다(전체의 28.4%가 swarming negative, 전체의 28.4%가 twitching negative). 본 연구결과는 쿼럼 센싱을 정상적으로 하는 임상 균주들 중에서도 상당 부분은 프로테아제 생성, 생물막 형성, 운동성 등의 특징들이 저해될 수 있음을 의미하며, 일부 임상 균주들은 그들의 쿼럼 활성과는 상관관계가 없는 독특한 패턴의 프로테아제 생성능과 생물막 형성능 및 운동성을 보여주고 있음을 확인하였다.

Pseudomonas aeruginosa is a Gram (-) opportunistic human pathogen causing a wide variety of infections on lung, urinary tract, eyes, and burn wound sites and quorum sensing (QS), a cell density-sensing mechanism plays an essential role in Pseudomonas pathogenesis. In order to investigate the importance of QS in the Pseudomonas infections of Korean patients, we isolated 189 clinical strains of P. aeruginosa from the patients in Pusan Paik Hospital, Busan, South Korea. The QS signal production of these clinical isolates was measured by signal diffusion assay on solid media using reporter strains. While most clinical strains (79.4%) produced the QS signals as similar level as a wild type strain, PAO1 did, where LasR, the initial QS signal sensor-regulator was fully activated, a minority of them (4.2%) produced much less QS signals at the level to which LasR failed to respond. Similarly, while 72.5% of the clinical isolates produced QS signals enough to activate QscR, an another QS signal sensor-regulator, some few of them (9%) produced the QS signals at much lower level where QscR was not activated. For further analysis, we selected 74 clinical strains that were obtained from the patients under suspicion of Pseudomonas infection and investigated the total protease activity that is considered important for virulence. Interestingly, significant portion of them showed very low protease activity (44.6%) or no detectable protease activity (12.2%). When the biofilm-forming ability that is considered very important in chronic infection was examined, most isolates showed lower biofilm-forming activity than PAO1. Similarly, significant portion of clinical isolates showed reduced motility (reduced swarming activity in 51.4% and reduced twitching activity in 41.9%), or non-detectable motility (swarming-negative in 28.4% and twitching-negative in 28.4%). Our result showed that the clinical isolates that produced QS signals at the similar level to wild type could have significantly reduced activities in the protease production, biofilm formation, and motility, and some clinical isolates had unique patterns of motility, biofilm formation, and protease production that are not correlated to their QS activity.

키워드

참고문헌

  1. Abdel-Mawgoud, A.M., F. Lepine, and E. Deziel. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86, 1323-1336. https://doi.org/10.1007/s00253-010-2498-2
  2. Alionte, L.G., B.M. Cannon, C.D. White, A.R. Caballero, R.J. O'Callaghan, and J.A. Hobden. 2001. Pseudomonas aeruginosa LasA protease and corneal infections. Curr. Eye Res. 22, 266-271. https://doi.org/10.1076/ceyr.22.4.266.5509
  3. An, D., T. Danhorn, C. Fuqua, and M.R. Parsek. 2006. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. USA 103, 3828-3833. https://doi.org/10.1073/pnas.0511323103
  4. Anderson, R.M., C.A. Zimprich, and L. Rust. 1999. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol. 181, 6264-6270.
  5. Arevalo-Ferro, C., M. Hentzer, G. Reil, A. Gorg, S. Kjelleberg, M. Givskov, K. Riedel, and L. Eberl. 2003. Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ. Microbiol. 5, 1350-1369. https://doi.org/10.1046/j.1462-2920.2003.00532.x
  6. Balaban, N., A. Giacometti, O. Cirioni, Y. Gov, R. Ghiselli, F. Mocchegiani, C. Viticchi, M.S. Del Prete, V. Saba, G. Scalise, and G. Dell'Acqua. 2003. Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J. Infect. Dis. 187, 625-630. https://doi.org/10.1086/345879
  7. Blackwood, L.L., R.M. Stone, B.H. Iglewski, and J.E. Pennington. 1983. Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect. Immun. 39, 198-201.
  8. Bruno, T.F., D.E. Woods, and C.H. Mody. 2000. Exoenzyme S from Pseudomonas aeruginosa induces apoptosis in T lymphocytes. J. Leukoc. Biol. 67, 808-816.
  9. Chugani, S.A., M. Whiteley, K.M. Lee, D. D'Argenio, C. Manoil, and E.P. Greenberg. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 2752-2757. https://doi.org/10.1073/pnas.051624298
  10. Cos, P., K. Tote, T. Horemans, and L. Maes. 2010. Biofilms: An extra hurdle for effective antimicrobial therapy. Curr. Pharm. Des. 16, 2279-2295. https://doi.org/10.2174/138161210791792868
  11. Davies, D.G., M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, and E.P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298. https://doi.org/10.1126/science.280.5361.295
  12. Dietrich, L.E., A. Price-Whelan, A. Petersen, M. Whiteley, and D.K. Newman. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308-1321. https://doi.org/10.1111/j.1365-2958.2006.05306.x
  13. Diggle, S.P., P. Cornelis, P. Williams, and M. Camara. 2006. 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int. J. Med. Microbiol. 296, 83-91. https://doi.org/10.1016/j.ijmm.2006.01.038
  14. Dong, Y.H. and L.H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43, 101-109.
  15. Erickson, D.L., R. Endersby, A. Kirkham, K. Stuber, D.D. Vollman, H.R. Rabin, I. Mitchell, and D.G. Storey. 2002. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect. Immun. 70, 1783-1790. https://doi.org/10.1128/IAI.70.4.1783-1790.2002
  16. Henke, J.M. and B.L. Bassler. 2004. Bacterial social engagements. Trends Cell. Biol. 14, 648-656. https://doi.org/10.1016/j.tcb.2004.09.012
  17. Hentzer, M., H. Wu, J.B. Andersen, K. Riedel, T.B. Rasmussen, N. Bagge, N. Kumar, M.A. Schembri, Z. Song, P. Kristoffersen, M. Manefield, J.W. Costerton, S. Molin, L. Eberl, P. Steinberg, S. Kjelleberg, N. Hoiby, and M. Givskov. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803-3815. https://doi.org/10.1093/emboj/cdg366
  18. Heydorn, A., B. Ersboll, J. Kato, M. Hentzer, M.R. Parsek, T. Tolker-Nielsen, M. Givskov, and S. Molin. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68, 2008-2017. https://doi.org/10.1128/AEM.68.4.2008-2017.2002
  19. Johnson, M.K. and D. Boese-Marrazzo. 1980. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect. Immun. 29, 1028-1033.
  20. Kim, C., J. Kim, H.Y. Park, J.H. Lee, H.J. Park, C.K. Kim, and J. Yoon. 2009. Structural understanding of quorum-sensing inhibitors by molecular modeling study in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 83, 1095-1103. https://doi.org/10.1007/s00253-009-1954-3
  21. Kim, C., J. Kim, H.Y. Park, H.J. Park, C.K. Kim, J. Yoon, and J.H. Lee. 2009. Development of inhibitors against TraR quorumsensing system in Agrobacterium tumefaciens by molecular modeling of the ligand-receptor interaction. Mol. Cells 28, 447-453. https://doi.org/10.1007/s10059-009-0144-6
  22. Lee, J.H., Y. Lequette, and E.P. Greenberg. 2006. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorumsensing transcription factor. Mol. Microbiol. 59, 602-609. https://doi.org/10.1111/j.1365-2958.2005.04960.x
  23. Lequette, Y., J.H. Lee, F. Ledgham, A. Lazdunski, and E.P. Greenberg. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188, 3365-3370. https://doi.org/10.1128/JB.188.9.3365-3370.2006
  24. Matsumoto, K. 2004. Role of bacterial proteases in pseudomonal and serratial keratitis. Biol. Chem. 385, 1007-1016. https://doi.org/10.1515/BC.2004.131
  25. O'Toole, G.A. and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295-304. https://doi.org/10.1046/j.1365-2958.1998.01062.x
  26. Page, M.G. and J. Heim. 2009. Prospects for the next anti- Pseudomonas drug. Curr. Opin. Pharmacol. 9, 558-565. https://doi.org/10.1016/j.coph.2009.08.006
  27. Parsek, M.R. and E.P. Greenberg. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27-33. https://doi.org/10.1016/j.tim.2004.11.007
  28. Purevdorj, B., J.W. Costerton, and P. Stoodley. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457-4464. https://doi.org/10.1128/AEM.68.9.4457-4464.2002
  29. Reading, N.C. and V. Sperandio. 2006. Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett. 254, 1-11. https://doi.org/10.1111/j.1574-6968.2005.00001.x
  30. Rumbaugh, K.P., A.N. Hamood, and J.A. Griswold. 2004. Cytokine induction by the P. aeruginosa quorum sensing system during thermal injury. J. Surg. Res. 116, 137-144. https://doi.org/10.1016/j.jss.2003.08.009
  31. Schaber, J.A., N.L. Carty, N.A. McDonald, E.D. Graham, R. Cheluvappa, J.A. Griswold, and A.N. Hamood. 2004. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 53, 841-853. https://doi.org/10.1099/jmm.0.45617-0
  32. Schaber, J.A., A. Hammond, N.L. Carty, S.C. Williams, J.A. Colmer-Hamood, B.H. Burrowes, V. Dhevan, J.A. Griswold, and A.N. Hamood. 2007. Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 56, 738-748. https://doi.org/10.1099/jmm.0.47031-0
  33. Schuster, M. and E.P. Greenberg. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036
  34. Schuster, M., C.P. Lostroh, T. Ogi, and E.P. Greenberg. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066-2079. https://doi.org/10.1128/JB.185.7.2066-2079.2003
  35. Schuster, M., M.L. Urbanowski, and E.P. Greenberg. 2004. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA 101, 15833-15839. https://doi.org/10.1073/pnas.0407229101
  36. Shrout, J.D., D.L. Chopp, C.L. Just, M. Hentzer, M. Givskov, and M.R. Parsek. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62, 1264-1277. https://doi.org/10.1111/j.1365-2958.2006.05421.x
  37. Storey, D.G., E.E. Ujack, H.R. Rabin, and I. Mitchell. 1998. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect. Immun. 66, 2521-2528.
  38. Tang, A., M.E. Marquart, J.D. Fratkin, C.C. McCormick, A.R. Caballero, H.P. Gatlin, and R.J. O'Callaghan. 2009. Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest. Ophthalmol. Vis. Sci. 50, 3794-3801. https://doi.org/10.1167/iovs.08-3107
  39. Welch, M., H. Mikkelsen, J.E. Swatton, D. Smith, G.L. Thomas, F.G. Glansdorp, and D.R. Spring. 2005. Cell-cell communication in Gram-negative bacteria. Mol. Biosyst. 1, 196-202. https://doi.org/10.1039/b505796p
  40. Whiteley, M., K.M. Lee, and E.P. Greenberg. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 13904-13909. https://doi.org/10.1073/pnas.96.24.13904
  41. Williams, P. 2007. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153, 3923-3938. https://doi.org/10.1099/mic.0.2007/012856-0
  42. Ymele-Leki, P. and J.M. Ross. 2007. Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl. Environ. Microbiol. 73, 1834-1841. https://doi.org/10.1128/AEM.01319-06