• Title/Summary/Keyword: queueing analysis

Search Result 338, Processing Time 0.029 seconds

ANALYSIS OF A QUEUEING SYSTEM WITH OVERLOAD CONTROL BY ARRIVAL RATES

  • CHOI DOO IL
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.455-464
    • /
    • 2005
  • In this paper, we analyze a queueing system with overload control by arrival rates. This paper is motivated by overload control to prevent congestion in telecommunication networks. The arrivals occur dependent upon queue length. In other words, if the queue length increases, the arrivals may be reduced. By considering the burstiness of traffics in telecommunication networks, we assume the arrival to be a Markov-modulated Poisson process. The analysis by the embedded Markov chain method gives to us the performance measures such as loss and delay. The effect of performance measures on system parameters also is given throughout the numerical examples.

A Simulation Study on the Variability Function of the Arrival Process in Queueing Networks (시뮬레이션을 이용한 대기행렬 네트워크 도착과정의 변동성함수에 관한 연구)

  • Kim, Sun-Kyo
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • In queueing network analysis, arrival processes are usually modeled as renewal processes by matching mean and variance. The renewal approximation simplifies the analysis and provides reasonably good estimate for the performance measures of the queueing systems under moderate conditions. However, high variability in arrival process or in service process requires more sophisticated approximation procedures for the variability parameter of departure/arrival processes. In this paper, we propose an heuristic approach to refine Whitt's variability function with the k-interval squared coefficient of variation also known as the index of dispersion for intervals(IDI). Regression analysis is used to establish an empirical relationships between the IDI of arrival process and the IDI of departure process of a queueing system.

Analysis of Unobservable RSS Queueing Systems (관측불가능한 임의순서규칙 대기행렬시스템 분석)

  • Park, Jin-Soo;Kim, Yun-Bae
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • The times of service commencement and service completion had been used for inferring the queueing systems. However, the service commencement times are difficult to measure because of unobservable nature in queueing systems. In this paper, for inferring queueing systems, the service commencement times are replaced for arrival times which can be easily observed. Determining the service commencement time is very important in our methods. The methods for first come first served(FCFS), last come first served(LCFS) queueing discipline are already developed in our previous work. In this paper, we extend to random selection for service(RSS) queueing discipline. The performance measures we used are mean queueing time and mean service time, the variances of two. The simulation results verify our proposed methods to infer queueing systems under RSS discipline.

  • PDF

Analysis of a Departure Process on the Population Constrained Tandem Queueing Network with Constant Service Times (사용자수 제한과 상수 서비스시간을 갖는 개방형 대기행렬의 출력 프로세스에 관한 연구)

  • Young Rhee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2000
  • We consider an open tandem queueing network with population constraint and constant service times. The total number of customers that may be present in the network can not exceed a given value k. Customers arriving at the queueing network when there are more than k customers are forced to walt in an external queue. The arrival process to the queueing network is assumed to be arbitrary. It is known that the queueing network with population constrant and constant service times can be transformed into a simple network involving only two nodes. In this paper, the departure process from the queueing network is examined using this simple network. An approximation can be calculated with accuracy. Finally, validations against simulation data establish the tightness of these.

  • PDF

Performance Analysis of ISDN D-Channel Access Protocol (ISDN D-채널 엑세스 프로토콜의 성능 분석)

  • 박성현;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.602-617
    • /
    • 1990
  • In this paper, we analyze the performance of D-channel access protocol at the S-reference point for the ISDN user network interface recommended by CCITT. For the case of multipoint access to D-channel, a queueing model of D-channel access protocol is proposed. The delay is analyzed by decomposing it into waiting queue delay and contention delay. The contention delay is decomposed further into vain contention delay and pure contention delay so the analysis of the priority queueing system with symmetrical and asymmetrical arrival rates may be applied. The numerical results obtained are compared with the results of the single station queueing system served by the non-preemptive priority.

  • PDF

A Study on Left-turn Queues Analysis using Queueing Theory under Permissive Left-turn Signal System (비보호좌회전 신호체계운영에 따른 좌회전 대기행렬분석에 관한 연구)

  • Kim, Kap Soo;Jung, Ja Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.663-669
    • /
    • 2011
  • In this study, the optimal length of left-turn lane in permissive left-turn signal system at the signalized intersection which has a left-turn bay is estimated. It is a simulation analysis using the queueing theory that estimate the length of left-turn lane. Traffic density conform to the standards of operating a permissive left-turn system of the Practical Manual Traffic Safety Facilities. And each of a left-turn arrival rate, a left-turn service rate, left-turn average queueing time, for green time average queueing vehicle, for red time average queueing vehicle and average queueing vehicle cycle is calculated. As a result of this study, we would learn how much the space should be secured at the signalized intersection which has a left-turn bay. The methodology using the queueing theory to work out the optimal length of waiting lane in the permissive left-turn signal system was presented.

Worst Closed-Loop Controlled Bulk Distributions of Stochastic Arrival Processes for Queue Performance

  • Lee Daniel C.
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.87-92
    • /
    • 2005
  • This paper presents basic queueing analysis contributing to teletraffc theory, with commonly accessible mathematical tools. This paper studies queueing systems with bulk arrivals. It is assumed that the number of arrivals and the expected number of arrivals in each bulk are bounded by some constraints B and (equation omitted), respectively. Subject to these constraints, convexity argument is used to show that the bulk-size probability distribution that results in the worst mean queue performance is an extremal distribution with support {1, B} and mean equal to A. Furthermore, from the viewpoint of security against denial-of-service attacks, this distribution remains the worst even if an adversary were allowed to choose the bulk-size distribution at each arrival instant as a function of past queue lengths; that is, the adversary can produce as bad queueing performance with an open-loop strategy as with any closed-loop strategy. These results are proven for an arbitrary arrival process with bulk arrivals and a general service model.

Large size asymptotics for non-blocking ATM switches with input queueing (입력단 버퍼를 갖는 비차단형 ATM 교환기에서의 large size asymptotics)

  • 김영범
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.10-19
    • /
    • 1998
  • With the advent of high-speed networks, the increasingly stringent performance requeirements are being placed on the underlying switching systems. Under these circumstances, simulation methods for evaluating the performace of such a switch requires vast computational cost and accordingly the importance of anlytical methods increases. In general, the performance analysis of a switch architecture is also a very difficult task in that the conventional queueing system such as switching systems, which consists of a large numbe of queues which interact with each other in a fiarly complicated manner. To overcome these difficulties, most of the past research results assumed that multiple queues become decoupled as the switch size grows unboundely large, which enables the conventional queueing theory to be applied. In this apepr, w analyze a non-blocking space-division ATM swtich with input queueing, and prove analytically the pheonomenon that virtual queues formed by the head-of-line cells become decoupled as the switch size grows unboundedly large. We also establish various properties of the limiting queue size processes so obtained and compute the maximum throughput associated with ATM switches with input queueing.

  • PDF

A Delay and Sensitivity of Delay Analysis for Varying Start of Green Time at Signalized Intersections: Focused on through traffic (신호교차로의 출발녹색시간 변화에 따른 직진교통류의 지체 및 지체민감도 분식)

  • Ahn, Woo-Young
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.21-32
    • /
    • 2007
  • The linear traffic model(Vertical queueing model) that is adopted widely in traffic flow estimation assumes that all vehicles have the identical motion before joining a queue at the stop-line. Thus, a queue is supposed to form vertically not horizontally. Due to the simplicity of this model, the departure time of the leading vehicle is assumed to coincide with the start of effective green time. Thus, the delay estimates given by the Vertical queueing model is not always realistic. This paper explores a microscopic traffic model(a Kinematic Car-following model at Signalised intersections: a KCS traffic model) based on the one dimensional Kinematic equations in physics. A comparative evaluation in delay and sensitivity of delay difference between the KCS traffic model and the previously known Vertical queueing model is presented. The results show that the delay estimate in the Vertical queueing model is always greater than or equal to the KCS traffic model; however, the sensitivity of delay in the KCS traffic model is greater than the Vertical queueing model.

  • PDF