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Worst Closed-Loop Controlled Bulk Distributions of
Stochastic Arrival Processes for Queue Performance

Daniel C. Lee

Abstract: This paper presents basic queueing analysis contribut-
ing to teletraffc theory, with commonly accessible mathematical
tools. This paper studies queueing systems with bulk arrivals. It
is assumed that the number of arrivals and the expected number of
arrivals in each bulk are bounded by some constraints B and ), re-
spectively. Subject to these constraints, convexity argument is used
to show that the bulk-size probability distribution that results in
the worst mean queue performance is an extremal distribution with
support {1, B} and mean equal to \. Furthermore, from the view-
point of security against denial-of-service attacks, this distribution
remains the worst even if an adversary were allowed to choose the
bulk-size distribution at each arrival instant as a function of past
quene lengths; that is, the adversary can produce as bad queueing
performance with an open-loop strategy as with any closed-loop
strategy. These results are proven for an arbitrary arrival process
with bulk arrivals and a general service model.

Index Terms: Performance tools and methodology, queueing anal-
ysis, teletraffic.

1. INTRODUCTION

As diverse network services are integrated, traffic considera-
tions become very important for quality of service and cost ef-
fectiveness. A protocol data unit (PDU) arriving at a service
point of communication networks have a random size with the
constraint on the maximum size (e.g., maximum transfer unit
[1]). The distribution on the finite support, however, is unknown
a priori and may well be non-static. The distribution of the PDU
size is a possible application of the results presented in this pa-
per.

We consider queueing systems with bulk arrivals, described
in terms of three stochastic processes: a) An arrival process that
specifies the times at which items arrive; b) a bulk-size process
that describes the number of items (e.g., bytes in PDU) arriving
at each arrival time; c) a service process that determines the ser-
vice completion times of the items in queue. The bulk size can
model the lengths of PDUs arriving, and the randomness of the
service process can possibly model the randomly time-varying
wireless links as the transmission speed may adapt to the chan-
nel condition or as ARQ and/or the adaptive error correction
coding schemes may be employed. We assume that the joint
statistics of the arrival and the service processes are given. (The
arrival process and the service process are allowed to be statis-
tically dependent.) We assume that the bulk-size process and
the vector process having the arrival and service processes as its
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components are statistically independent of each other. Regard-
ing the bulk-size process, we assume that the bulk-sizes at dif-
ferent arrival times are statistically independent and that the bulk
size at the n-th arrival time is a random variable U,, described
by a probability mass function f,. Subject to the constraints
E[U,) < Aand U, € {1,---, B}, we are interested in finding
a sequence {f, }22,; of bulk-size distributions that leads to the
worst possible values for certain natural performance measures
such as the expected number of items waiting in queue. Let 7
be the set of all probability mass functions satisfying the above
two constraints, and let F5, be the subset of F in which the con-
straint E[U,,] < A is satisfied with equality. Throughout this
paper, we assume that A < B so that ¥ and F are nonempty.
Let f* € F be the “extremal” distribution defined by

B2 if i=1,
fr@) =14 0, if 1<i<B,
2=l if i=B.

The results of this paper establish that for a wide class of systems
and performance measures, the worst case sequence of bulk-size
distributions is the sequence 7* = (f*, f*,---). The set of
systems to be considered includes the queueing systems with
highly correlated interarrival times with bulk arrivals and/or
non-exponential service times.

It will be seen that, in fact, the results hold in an even stronger
sense. Let us introduce an adversary who at any arrival time, is
allowed to choose the distribution of the current bulk-size based
on a fair amount of information on the realization of the arrival
and service processes. It will be shown that even under such cir-
cumstances, the sequence 7* remains the worst-case choice of
bulk-size distributions. In other words, it makes no difference if
we allow the adversary to use “closed-loop” strategies. Further-
more, statistical dependence between the bulk-sizes at different
arrival times cannot worsen the value of the performance mea-
sures under consideration.

It is fair to view f* as the “most bursty” element of F. In
that respect, this paper establishes that out of all bulk-size pro-
cesses with given mean and support, the most bursty one leads
to the worst queueing delay. This result can be viewed as the
opposite extreme of the results on the stochastic processes that
minimize the average queueing delay [2]-[4]. The methodology
of the present paper can also be viewed as an application of the
stochastic ordering concept [S]-[7].

Performance under the worst case arrival pattern presents a
new field in teletraffic theory [8]. The studies in this field can
be categorized by the combination of two criteria; the perfor-
mance measure with which to decide what is the worst and the
set of traffic patterns among which to decide the worst one.
Much of the existing literature uses the cell (packet) loss rate as
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the performance measure and considers the set of traffic pass-
ing through the leaky bucket regulation [9]-[21]. Reference
[8] considers the cell loss ratio as the performance measure of
a multiplexer with deterministic bandwidth, wherein different
traffic sources are multiplexed. Under the assumption that the
cell arrival patterns are stationary and ergodic, upper bounds of
the cell loss ratio (“conservative CLR estimation”) are elabo-
rately defined, and then the worst case cell arrival patterns for
a tightly bounding conservative CLR (cell loss ratio) estimation
were identified from the set of patterns conforming the leaky
bucket constraint. References (22]-[24] again consider cell
loss ratio (CLR) as a performance measure of the multiplexer,
wherein input traffic streams are all from the leaky-bucket-based
sources. Various cases were discussed; for example, in some
cases the traffic sources input to the multiplexer are constrained
to have identical patterns (homogeneous traffic), and in other
cases without such constraint. In particular, much of the liter-
ature discussed whether the on-off process is the worst pattern.
In some cases (e.g, homogeneous sources and unbuffered mul-
tiplexer), the on-off process was proven to be the worst [23].
However, [22] and [23] provide cases wherein the three-state
source causes worse cell loss ratio than the on-off sources. Ref-
erence [25] employs loss rate, but for the application of multi-
media communication any traffic failing to meet a certain delay
requirement is counted as loss. (This performance measure has
been also used in [26] under a completely deterministic formal-
ism.)

References [24], [27], and [28] consider as a performance
measure the queue length distribution of the multiplexer with
an infinite buffer. Again, with this performance measure is dis-
cussed the issue of whether the on-off pattern is the worst one
passing through the leaky bucket. Reference [27] studies the
traffic pattern consisting of periodic bursts of a maximum length
under the cell delay variation constraint at the peak rate followed
by a silence period. This is an on-off pattern, and the papers
study the queue length distribution for the cases that multiple
sources with such traffic patterns are multiplexed. Reference
[28] provides through simulation a traffic pattern that results in
the queue length’s survival function (complementary cumulative
distribution) worse than the on-off pattern. In fact, [24] con-
siders both the queue length distribution and the cell loss rate
as performance measures and compares the on-off pattern and
the pattern presented in [28]. The simulation results indicate
that the on-off pattern exhibits the worse cell loss rate yet better
queue length distribution than the pattern presented in [28]. In
[29], the performance measure in determining the “worst” is the
variation of the interarrival times. With this measure, the worst
traffic passing through leaky bucket regulations is evaluated.

Most literature mentioned above views the traffic as a station-
ary stochastic process. In deterministic setup, the studies relat-
ing to obtaining tight bounds on the worst delay of traffic regu-
lated by leaky bucket have been elegantly presented in various
contexts in different forms [20], [26], [30]-[33]. This approach
can be also viewed as bounding performance of the worst traffic
where the performance measure is the maximum delay experi-
enced by traffic.

Study of the worst arrival traffic in the present paper is dif-
ferent from the above literature in that we focus on the traffic
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described by a stochastic bulk arrival process and identify the
worst sequence of bulk distributions. In addition, the results in
the present paper hold true even under the assumption that the
adversary generates the worst-case traffic, in a closed-loop man-
ner, by observing the queue status. As a performance measure,
this paper considers the expected value of a general increasing
and convex function of the queue length.

II. PRELIMINARIES

The following simple property of the distribution f* is useful
in establishing the results of this paper.

Lemma 1: Let U be a random variable with probability mass
function f € F and let ¢ : R — R be convex. Then, the value
of E[g(U)] is maximized over all f € F if f = f*. Further-
more, if g is also nondecreasing, then f* maximizes F[g(U)]
over the set F as well.

Proof: Consider some f € F) such that f(v) =& > 0
for some v satisfying 1 < v < B. We can construct another
probability mass function f € Fy by letting f(v) = 0, f(B) =
f(B)+(v—1)8/(B~1), f(1) = f(1) + (B~ v)§/(B - 1),
and f(u) = f(u)ifu ¢ {1, v, B}. Itis easily seen that f € F).
Let

A= Z fu)g(u) — Z flu)g(w).

Then, -
A = 2=30l0(B) - o)l + p—vlo(1) — o(v)]
B
= 216 ) o) - g - 1)

i=v+1

Bov o
=10 Lo — o= 1)

> (B -v)p—rilg(o+1) ~ (o)
(v~ 1) p—2dlgw + 1) ~ g(v)]

= 0.

The inequality above follows from the convexity of g. By re-
peating this process up to B — 2 times, we end up with a prob-
ability mass function which is zero outside {1, B} and which
belongs to F. Such a probability mass function can only be
equal to f*. Furthermore, throughout this process, the value of
the objective function cannot decrease, and this shows that f*
maximizes the objective function over the set F. Let us now
assume that ¢ is nondecreasing. Then, it is clear that by increas-
ing the mean of U, we can increase F[g(U)], and this implies
that the maximum of F[g(U)] over F) is the same as the maxi-
mum over F. 0O

Lemma 2: If the functions f : R — Randg: ZT — R are
convex and f is nondecreasing, the composite function, f o g :
Z+ — R is convex.

Proof:

gz +(1-Ny)) F(Ag(z) + (1= Ng(y))

<
< Af(g(z)) + (1= X)f(9(y)).
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The first inequality holds because g is convex, and f is nonde-
creasing. The second inequality holds because f is convex. O

III. A SIMPLE DISCRETE-TIME MODEL WITH
DETERMINISTIC INTERARRIVAL TIMES

In this section, we consider a simple discrete-time queueing
system. The arrival process is deterministic with arrivals occur-
ring at each integer time. The service process is specified in
terms of a sequence {(Q),,} of random variables as follows: The
number of items served during the time interval [n,n + 1) is
equal to (), unless we run out of items in the queue. More pre-
cisely, let X (¢) be the number of items in the queue at time ¢,
assumed to be a right-continuous process. Then, X () changes
only at integer times and evolves according to the equation

X(n+1)=[X(n) = Qu]" + Uny, 8))
where [a]* = max{a,0}.

Theorem 1: The sequence of bulk-size distributions 7* max-
imizes E[g(X (n))] for every nonnegative integer n and for ev-
ery convex and nondecreasing function g : R — R.

Proof: Fix some n and let m < n. We will show
that the worst-case bulk-size distribution f,,, at time m is equal
to f*. Let us fix a sample path of the service process {Q,}
and let us also condition on the values of {Ug|k # m}. Us-
ing Lemma 2, an easy inductive argument based on (1) shows
that X (n) is a convex nondecreasing function of U,,. Using
Lemma 2, g(X (n}) is also a convex nondecreasing function of
U,,. Then, Lemma 1 implies that

E[g(X(n)) | {Qn}7 {Ur, k # m} ]) 2

is maximized by letting f,, = f*. It follows that E[g(X(n))]
is also maximized by letting f,,, = f*. Since this argument is
valid for every m, the result is proved. 0

As a corollary of Theorem 1, the sequence n* maximizes
E[X(n)] for all n > 0. In particular, it maximizes the infinite-
horizon average and the infinite horizon discounted expected
number of items in the system.

IV. GENERAL ARRIVAL PROCESS

In this section, we extend the results of the previous section
to general arrival processes with bulk arrivals. The arrival pro-
cess is defined here in terms of an infinite sequence of arrival
times. No further assumptions will be needed on the statistics
of this process; e.g., interarrival times can be correlated in any
way. Let N = {N(%)|t > 0} be a right-continuous counting
process. The process N (¢) models virtual service completion
times: at each time that N(¢) jumps by 1, service is completed
for the item currently being served, if any; if no item is currently
served, nothing happens. If, as a special case, N (t) is a Poisson
counting process, this model is equivalent to the standard model
of a server with exponentially distributed service times due to
the memoryless property of the Poisson process. Let X (t) be
the queue size at time ¢, assumed to be a right-continuous func-
tion of time.

Theorem 2: The sequence of bulk-size distributions 7* max-
imizes E[g(X(t))] for every t > 0 and for every convex and
nondecreasing function g : R — R.

Proof: Let A = {T,,ln = 1,2,---} denote the arrival
process, where T, are the arrival times. Let X,, = X(T,,) be
the queue size immediately after the n-th bulk arrival. We notice
that X, evolves according to

Xon1 =[Xn = {N(Tn1) = N(To) }' +Unia. )
Let us consider g(X(t)) at an arbitrary time ¢. Let us
fix, by conditioning, a particular sample path of the process
A. Conditioned on A, there exists an integer n(t,.A) such
that T;, 4y < t < Th,4)+1. Furthermore, X(t) =

[ Xt a) — N(t) + N(Tnt, 1)) ]+. Let us consider the prob-
lem of choosing f,, so as to maximize

E[ g(X@)|N A {Uk, k #m} ]
=E[9 ([Xngt,a) = N(t) + N(Toie, )I) l

N, A, (Ui, k£ m)], @

for an arbitrary set of bulk distributions {fx,k # m}. Using
(3), we see that X,(;, 4) is a convex and nondecreasing function
of U,,. Using Lemma 2 twice, we conclude that g([ Xy, 4) —
N(t)+ N(T,:,4))] ") is also a convex and nondecreasing func-
tion of U,,. Lemma 1 then implies that the maximum of (4)
is achieved by letting f,, = f* for each realization of A/, A,
{Uk, k # m}. Therefore, f,, = f* maximizes E[g(X (t))] for
an arbitrary set of bulk distributions { fi, k¥ # m}. Therefore,
the sequence m* maximizes E[g(X (¢))]. O
Comments on modeling

If the process N (t) is a Poisson counting process, the queue-
ing model is reduced to the one with an exponential service time
distribution. Thus, the queueing model presented in this section
is a generalization of the single-server queueing system with an
exponential server—e.g., G/M/1 with bulk arrivals. For an-
other queueing model, which is more intuitive, Appendix will
prove that the statement in Theorem 2 is still true.

V. ADVERSARY’S STRATEGY

The fact that f,,, = f* maximizes expression (2) for each re-
alization of {@,} and {Uy,k # m} generalizes the result of
Theorem 1 further. Even if an adversary were given knowledge
of the sample path of the service process {@, }, and were al-
lowed to choose the bulk-size distributions based on such infor-
mation, the sequence 7* would be still chosen for the purpose of
maximizing F[g(X (n))] for the following reason. Since f,, =
/* maximizes the expression (2) for each sample path of {Q,,}
and {Uy,k # m}, fmm = f* maximizes E[g(X(n))|{Qx}]
without regard to the choice of {fi, k # m}. As a result, 7*
maximizes E{g(X(n))|{Q.}] for each sample path of {Q,}.
Therefore, 7* maximizes E[g(X (n))].

Moreover, consider a case where an adversary is given knowl-
edge of the realization of {Uy, & < m} at each decision making
time m as well as the sample path of the service process {Q,},
and is allowed to choose the bulk-size distributions based on
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such information. In this case, an adversary is allowed to exer-
cise a closed-loop strategy, where a closed-loop strategy is de-
fined as a set of mappings
b {{@n}} x {{Uk, k < m}} — F, integerm.

Even in this case, an open-loop strategy that uses the sequence
7* maximizes E[g(X (n))] for the following reason. At each
time m, f,, = f* maximizes expression (2) for each realiza-
tion of {Qn},{Uk,k < m}, and {Uy,k > m}. Therefore,
without regard to mappings {ux,k # m}, f = f* max-
imizes E{g(X(n)){Qnr}, {Uk, k& < m}] for each realization
of {Q.} and {Uy,k < m}. Therefore, a constant mapping
pm({Qn}, {Uk, k < m}) = f* maximizes E[g(X (n))] for any
{r,k # m}. Hence, the open-loop strategy that uses the se-
quence m* maximizes E[g(X (n)})]. Since the open-loop strat-
egy is maximal in the case that the information of {Q,} and
{Uk, k < m} is available to an adversary at each decision mak-
ing time m, the open-loop strategy is also maximal for the case
that any less amount of information (e.g., only intermediate in-
formation of {Qx,k < m} and {Uk,k < m}) is given to an
adversary at each time m. As a side remark, we can alterna-
tively prove this result, using convexity and backward induction
from the dynamic programming equation.

Again, it is clear from the proof of Theorem 2 that open-loop
strategy 7 would remain the worst-case sequence of bulk-size
distributions even if an adversary were given full knowledge of
the realization of the processes A, N, and the past bulk sizes
{Uk,k < m} prior to choosing f,,. (The argument follows
the same pattern as the case of the discrete time model.) The
sequence 7* would also remain the worst-case sequence if the
adversary were only given some intermediate (less) amount of
information. For example, at any arrival instant, the adversary
might be allowed to use the knowledge of past arrival times and
of the current number of items in queue: The result would still
be the same.

V1. DISCUSSIONS

The proofs in the present paper explicitly establish Theo-
rems 1 and 2 in the queueing system described by bulk pro-
cess as well as the arrival and service processes, even under the
assumption that allows arrival and service processes to be sta-
tistically dependent with each other. The present paper also ad-
dresses the strategy setting wherein an adversary is given certain
degrees of knowledge in the sample paths of the bulk process,
the service process, and the arrival process in choosing the bulk
size distributions for the denial-of-service attack. The proofs
provided by the present paper explicitly show that the open-loop
control choosing the extremal distribution is the worst for the
queue, even in the case the adversary is given various degrees
knowledge on the sample paths.

We also note that these results in the present paper extend to
the fluid queue wherein the random bulk size U,, takes values in
continuum [a, b] and the virtual service process N (t) is gener-
alized to have nondecreasing sample functions (not necessarily
discrete counting process). For this fluid queueing system, the
adversary’s open-loop choice of extremal probability distribu-
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tion

[~ e

, if u<a,
ﬁ, if a<wu<b,

1, if u>b,

Ff (u) = P*(U, <u) =

which is a generalization of the extremal probability mass func-
tion f*, results in the worst queue performance under the as-
sumption of the adversary’s various degrees of knowledge dis-
cussed before. The proof of Theorem 2 remains valid in this
fluid queue as well.

APPENDIX

This appendix will augment the discussion in Section IV with
a different queueing model. Instead of using the virtual service
completion counting process, N(t), defined in Section IV, we
now consider a nonnegative random process y(t) to model the
service of items. An item that begins receiving its service at
time to departs at inf{7| ftz v(t)dt = 1}. In this appendix,
we assume that the queueing discipline is the first-in-first-out
(FIFO). Random process y(t) can be interpreted as the instanta-
neous service rate available to serve an item. In this appendix,
we show that the statement in Theorem 2 is still true with this
model of the queueing system.

Let us fix, by conditioning, a particular sample path of the
arrival process .A. Then, we have

n(t,A

)
X(t) = Xo+ Y Ux—D(t), (5)
k=1

where X is the number of items in the queue size at some time
Ty prior to the first bulk arrival, and D(#) is the number of de-
partures in interval [T}, ¢]. Let T" denote the service rate process
~(t), —00 < t < 0. Let us also fix, by conditioning, a particu-
lar sample path of the process I' and a particular sample path of
{Ug, k # m}. We now consider the problem of choosing f,, so
as to maximize

Lemma 3: X(t) at an arbitrary time t is a convex and
nondecreasing function of U,,, given fixed sample paths,
F7A7 {UkH k 76 m}
Proof: We consider two cases: T,,, > tand T, <t.

Casel. T, >t

The queue size at £ is not affected by the bulk size of its future
arrival U,,,. Therefore, X (¢} is a constant function of U,,, and
thus is a convex and nondecreasing function of U,,,.

Case2. T, <t:

Equation (5) can be re-written as

n(t,A)
Xo+ Y. Up+Un—D()
k#m,k=1

X(@) = M

We note that D(t) at time ¢ > T, is a function of U, for fixed
sample paths of I', A, {U, k # m} and a fixed value of X;. To
make this explicit, we will also denote D(¢) as D(t,U,,). We
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consider the following three subcases defined by fixed sample
paths, I', A, {Uy, k # m}.

Case2.a. X(7) > 1,V7 € [T, t] for U, = 1:
In this case, the server of the queueing system never runs out
of an item to serve in [T,,t]; even for U,, = 1, the service
rate y(7) is fully utilized at each moment 7 € [T},,t]. Thus,
the number of departures in [T}, t] cannot be increased by in-
creasing the bulk size U,,,, and we have D(t,1)= D(¢,2)=---
= D(t, B). Therefore, U, — D(t,U,,) is a linearly increasing
function of U,,, and this implies that X (¢), in accordance with
(7), is a convex and nondecreasing function of U,,.

Case 2.b. For Uy, = B, X (£) = 0 for some € [Ty, t):
In this case, all U,, items entering the queueing system depart
prior to time ¢ no matter what the bulk size U, is. Therefore,
U — D(t,U,,) is a constant function of U,,,. This implies that
X(t), in accordance with (7), is a convex and nondecreasing
function of U,y,.

Case 2.c. For U,,, = 1, X(t) = 0 for some ¢ € [T}, t), and
for U, = B, X(7) > 1,V7 € [T\, t]:
In this case, there is the unique integer [ < B such that i) the
queueing system becomes empty at some time in [T, t) if 1 <
Un <1—1andii) X(r) > 1,V7 € [T}, t] if | < Up,. For
Un=12,---,1-1,U, ~ D(t,Uy,) is constant. With regard
to the value U,,, = [, we have

Un — D(t,Uy) = 1—D(t,1)
_ {(LJJ—DUJ—D,

(1-1)—-D(,1—-1)+1,
because D(t,1) is either D(t,l — 1) or D(¢,l — 1) + 1. With
regard to U,,, > [, we have

®

(l+i)— D(t,l+i) =1—D(t,1)+4, fori=1,2---. (9)

Therefore, U, — D(t, U,,) is a convex and nondecreasing func-
tion of U,,.

In each of the cases 2.a, 2.b, and 2.c, U,, — D(t,U,,) is a
convex and nondecreasing function of U,,. This and (7) implies
that X (t) is a convex and nondecreasing function of U,, for case
2 (T, < t). Due to the results in cases 1 and 2, X (t) is a convex
and nondecreasing function of U,,. ]

Lemmas 2 and 3 imply that g(X (1)) is a convex and non-
decreasing function of U,,, given an arbitrary set of sample
path realizations I, 4, {Ug, k5 # m}. Lemma 1 then implies
that the maximum of (6) is achieved by letting f,,, = f* for
each realization of [, A, {Uy,k # m}. Therefore, f,, = f*
maximizes E[g(X(t))] for an arbitrary set of bulk distribu-
tions {fx,k # m}. Therefore, the sequence 7* maximizes

Elg(X(®))]-
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