• 제목/요약/키워드: quench characteristic

검색결과 52건 처리시간 0.029초

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.

초전도 케이블의 Quench 특성에 대한 계통안전성 제어방식 (Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable)

  • 이근준;황시돌
    • 조명전기설비학회논문지
    • /
    • 제19권6호
    • /
    • pp.29-35
    • /
    • 2005
  • 본 논문은 고온 초전도 케이블을 전력계통의 송전용량 증대를 위해 적용시켰을 경우, 고장발생시 초전도케이블에서 예상되는 ??????치의 영향에 대해 안전하게 제어할 수 있는 방법을 제시하였다. 접근 방법으로는 초전도케이블의 ??????치 특성을 열평형 방정식으로 모델링하고 그 결과 고장전류에 따른 케이블의 설계 최대 온도상승한계에 도달하는 시간을 산출하여 기존의 보호계전시스템의 차단시간과 비교함으로서 안전성 여부를 판정하였다. ??????치발생 고장시간을 모의하기 위해 초전도케이블용 EMTDC모형을 개발하였으며, 모의 결과 초전도 케이블 계통을 보호할 수 있는 안전성 제어방식이 설계 가능함을 보였다.

초전도 케이블의 퀜치 특성에 대한 계통안전성 제어방식 (Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable)

  • 이근준;황시돌;이정필;김창현;박희철
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.375-380
    • /
    • 2004
  • This paper presents the basic quench protection idea for the HTS(High-Temperature Superconducting) cable. In Korea power system, the transfer capability of transmission line is limited by the voltage stability, and HTS cable could be one of the countermeasure to solve the transfer limit as its higher current capacity and lower impedance[1]. However, the quench characteristic of HTS cable makes HTS cable to loss its superconductivity, and therefore change the impedance of the line and power system operating condition dramatically. This pheonominum threats not only HTS cable safety but also power system security, therefore a proper protection scheme and security control counterplan have to be established before HTS cable implementation. In this paper, the quench characteristics of HTS cable for the fault current based on heat balance equation was established and a proper protection method by FCL(Fault Current Limiter) was suggested.

  • PDF

3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구 (A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation)

  • 이근준;황시돌;이현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF

Contact resistance increment of no-insulation REBCO magnet during a quench

  • Im, Chaemin;Cho, Mincheol;Bang, Jeseok;Kim, Jaemin;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.31-35
    • /
    • 2019
  • The lumped-parameter circuit model for a no- insulation (NI) high temperature superconductor (HTS) magnet has been well understood after many experimental and analytic studies over a decade. It successfully explains the non-linear charging behaviors of NI magnets. Yet, recently, multiple groups reported that the post-quench electromechanical behaviors of an NI HTS magnet may not be well explained by the lumped circuit model. The characteristic resistance of an NI magnet is one of the key parameters to characterize the so-called "NI behaviors" of an NI magnet and recently a few groups reported a potential that the characteristic resistance of an NI magnet may substantially vary during a quench. This paper deals with this issue, the increment of contact resistance of the no-insulation (NI) REBCO magnet during a quench and its impact on the post-quench behaviors. A 7 T 78 mm NI REBCO magnet that was previously built by the MIT Francis Bitter Magnet Laboratory was chosen for our simulation to investigate the increment of contact resistance to better duplicate the post-quench coil voltages in the simulation. The simulation results showed that using the contact resistance value measured in the liquid nitrogen test, the magnitude of the current through the coil must be much greater than the critical current. This indicates that the value of the contact resistance should increase sharply after the quench occurs, depending on the lumped circuit model.

Quench Characteristics of YBCO Film for Current Limiting Using Magnetic Field

  • 박권배;최효상;김혜림;현옥배;황시돌
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.252-256
    • /
    • 2002
  • We studied YBCO films for current limiting of the resistive type which utilizes a transition from superconducting to normal state caused by exceeding critical current. The films were deposited on sapphire substrates and covered by gold top layer. The current limiting element consists of 2 mm wide YBCO stripes connected in series. A serious problem in using YBCO films for current limiting is inhomogeneities caused by imperfect manufacturing. Therefore simultaneous quench is a difficult problem when elements for current limiting are connected in series. So some researchers have recently proposed using magnetic field and heating for simultaneous quench. We have measured extended exec trim field-current density(E-J) characteristics for current limiting elements of YBCO films in applied magnetic field of 0 - 130 mT. And we have investigated quench characteristics in current limiting elements and between elements of YBCO films in applied magnetic field. The result of the experiments show that the presence of applied magnetic fields induces uniform quench distribution fur the stripes in element at $50V_{rms}$, otherwise non-uniform quenches were observed. And simultaneous quenches between elements were investigated at $150V_{rms}$. We suggest that suppressing the critical current by increased fields due to fault current effectively forced the stripes of higher $J_{c}$(0) to quench, resulting in equalizing quench times.s.s.s.

  • PDF

불평형 고장시의 초전도 케이블의 응동 특성 (Dynamic Characteristic of the Superconducting Cable in unbalanced Faults)

  • 이근준;이종배;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.37-39
    • /
    • 2007
  • In the faults of power line, single line ground and line-to-line fault make power system to unbalanced. These fault currents make unbalanced power system. This paper suggests the simulation results of dynamic characteristic of HTS cable system under unbalanced faults condition using EMTDC, Quench phenomenon and current limiting effects are observed. However, quench on the HTS is destroy cable system, coordination with SFCL has to be considered.

  • PDF

고온초전도동기모터의 교류손실에 따른 ?치 해석에 관한 연구 (A Study on the Quench characteristics Analysis considering Ac-Losses of High-Tc Superconducting Synchronous Motor)

  • 윤용수;송명곤;문창욱;홍계원;이상진;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.93-96
    • /
    • 1999
  • This paper deals with the quench characteristic analysis in high-Tc superconducting synchronous motor of five to six hundred watts capacity. First, the magnetic field distribution and ac losses of high-Tc superconducting motor with the additive flux damper circuit was derived and computer simulation was performed with the equivalent model using FEM. The simulation results show that the quench state lasts for about 0.3 seconds.

  • PDF

Quench analysis and protection circuit design of a superconducting magnet system for RISP 28GHz ECR ion source

  • Song, S.;Ko, T.K.;Choi, S.;Ahn, M.C.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.37-41
    • /
    • 2016
  • This paper presents the developed quench analysis code and protection circuit design for a superconducting magnet system of 28GHz electron cyclotron resonance (ECR) ion source. The superconducting magnet is composed of a hexapole magnet and four solenoid magnets located outside of the hexapole one. All magnets are wound with NbTi composite wire and impregnated by epoxy. By using the developed characteristic analysis code, the normal zone resistance, decaying current and temperature rising can be estimated during quench. Also, the stored magnetic energy is successfully consumed from the series resistor of the designed protection circuit. The analytical results are compared with the experimental results to verify the developed quench analysis code and protection circuit.