• Title/Summary/Keyword: quench and the recovery characteristics

Search Result 29, Processing Time 0.023 seconds

Voltage-Current Characteristics According to Fault Period of Flux-Lock SFCL with subtractive polarity winding (감극결선용 자속구속형 전류제한기의 사고주기별 전압전류 특성)

  • Han, Tae-Hee;Hwang, Jong-Sun;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Choi, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.101-102
    • /
    • 2006
  • We investigated the characteristics of flux-lock type superconducting fault current limiter (SFCL) by the fault cycles. Since the recovery characteristics of a superconducting element in the flux-lock type SFCL were dependent on the winding' direction between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. As the fault cycles was increased from 1 cycle to 5 cycles, the initial limiting current ($I_{ini}$) and quench characteristic were mostly same. As the fault period increases, the recovery time of the superconducting element increases. The consumed energy and recovery characteristics in a superconducting element show the same tendency.

  • PDF

Stability and Quench Charcteristics of the SC Conductor for a $\mu$SMES Magnet ($\mu$SMES마그네트용 초전도도체의 안정성 및 퀀치 특성)

  • 김해종;성기철;조전욱;권영길;류강식;최병주;류경우
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • We are developing a small-sized superconducting magnetic energy storge ($\mu$SMES) magnet with the storage capacity of a few megajoules, which provides electric power with high quality to sensitive electric loads. A kA class superconductor with a high coppe $r^erconductor ratio was selected as a candidate conductor. The superconductor was tested in two points of view, which are basic and important in development of the $\mu$SMES magnet. First, stabilities of the superconductor against localized disturbances such as wire motions were estimated by using a wire heater. Second, the quench current characteristics for different charge rates were also tested. The stability data showed that the short heat pulses made the conductor more unstable. The superconductor had relatively high recovery currents ranging between 40% and 50% of its critical currents. The quench tests indicated that the quench currents of the conductor were independent of current ramp rates up to 3000 A/s and nearly equal to its cuitical current data.ta.

  • PDF

배전계통 위치별 초전도전류제한기 적용효과 분석

  • Im, Seong-Hun;Hwang, Jong-Seon;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.213-213
    • /
    • 2009
  • In this paper, we investigated the current limiting characteristics due to the application location of the superconducting fault current limiter (SFCL) such as the feeder, the bus, the secondary side of transformer in a power distribution system. In addition, the quench and the recovery characteristics of the SFCL installed in each location of the power distribution system were compared each other. Through the analysis, in case that the SFCL was applied into the feeder line, its current limiting and voltage-drop compensating characteristics were confirmed to be the more effective. On the other hand, the power burden of the SFCL was increased higher compared to the SFCL'S other application location.

  • PDF

Analysis on Current Limiting and Recovery Characteristics of a SFCL using a Trigger of Superconducting Element (초전도소자의 트리거를 이용한 초전도 전류제한기의 전류제한 및 회복특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • As one of the countermeasures to improve the recovery characteristics of the SFCL (superconducting fault current limiter), the method using the trigger of high-TC superconducting element (HTSC) when the quench in the HTSC element occurred was proposed. To confirm the suggested method, the control circuit to detect the quench occurrence of HTSC element in case of the fault occurrence was designed and the current limiting and recovery experiments of the SFCL using the designed control circuit were performed. Through the analysis for the experimental results, the points of both the open time and the closing time of a power switch comprising the control circuit could be adjusted by the resistance amplitude of a normal conducting current limiting resistor (CLR) and the recovery characteristics of the SFCL together with the current limiting operation could be confirmed to be improved by using the control circuit.

Analysis on quench recovery of Au/YBCO thin film mender lines (Au/YBCO 박막 meander line의 퀜치회복에 대한 분석)

  • 김혜림;최효상;임해용;김인선;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.92-94
    • /
    • 2001
  • We investigated quench recovery characteristics of Au/YBCO thin film meander lines. YB$a_{2}$$Cu_{3}$ $O_{7}$films were coated in-situ with a gold layer and patterned into 2 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents at various source voltages. Resistance decreased first slowly and then rapidly to zero. Resistance vs. time curves for different source voltages fell on top of each other when translated horizontally. The slowly varying portion of data fell on straight lines of a slope on a semi-log scale at all source voltages. A heat balance equation reflecting heat loss from meander lines to surroundings explains these results quantitatively.

  • PDF

Recovery time after quench of Au/YBCO thin film for fault accident detection (단락 사고 검출용 고온초전도체의 초전도성 회복 시간 변화 측정)

  • Yim, Seong-Woo;Kim, Hye-Rim;Hyun, Ok-Bae;Sung, Tae-Hyun;Sim, Jung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.246-247
    • /
    • 2007
  • 최근 KEPRI-LSIS가 공동 개발한 하이브리드형 초전도 한류기 동작 시, 사고 검출을 담당하는 초전도체의 최적 설계에 적용하기 위하여 Au/YBCO 박막의 ��치 회복 특성을 조사하였다. $600\;V_{rms}$, 3 ms의 사고가 초전도 박막에 인가되었을 때, ��치가 종료된 이후 초전도성을 회복하기 위해 142 ms의 시간이 소요되었다. 또한 인가 시간이 증가함에 따라 소요 시간도 비례하여 증가하여 4 ms 동안 인가되었을 때, ��치 회복 시간은 272 ms로 측정되었다.

  • PDF

Quench characteristics of bare and of-laminated YBCO-coated conductor (YBCO 고온초전도체의 \ulcorner치특성 연구)

  • Kim Ho-Min;Park Kwon-Bae;Lee Bang-Wook;Oh Il-sung;LEE Hai-gun;Iwasa Yukikazu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.1-5
    • /
    • 2004
  • This paper presents a study on the stability of bare and cu-laminated YBCO-coated conductor. we investigate the characteristics of quench/recovery behavior of YBCO test samples. bare and copper-laminated, by subjecting each test sample. immersed in a bath of liquid nitrogen boiling at 77.3 K. to a transport current pulse superimposed to a baseline DC current of 90-95% the critical current. The current pulse has an amplitude up to ∼4.5 times the critical current and a duration of 300 ms. This paper presents both experimental and simulation results.

Analysis on Current Limiting Characteristics of a Fault-lock Type SFCL Applied into a Simulated Power System (모의전력계통에 적용된 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • When the current of the superconducting element exceeds its critical current by the fault occurrence, the quench of the high-$T_C$ superconducting fault current limiter (HTSC) comprising the flux-lock type superconducting fault current limiter (SFCL) occurs. Simultaneously, the magnetic flux in the iron core induces the voltage in each coil, which contributes to limit the fault current. In this paper, the fault current limiting characteristics of the flux-lock type SFCL as well as the load voltage sag suppressing characteristics according to the flux-lock type SFCL's winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the flux-lock type SFCL were carried out. The flux-lock type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag suppressing operations through the fast quench occurrence right after the fault occurs and the fast recovery operation after the fault removes than the flux-lock type SFCL designed with the subtractive polarity winding.

Recovery Characteristics of SFCL According to the Turn's Variation (턴수 변화에 따른 초전도 전류제한기의 회복특성 분석)

  • Han, Tae-Hee;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Hwang, Jong-Sun;Choi, Myoung-Ho;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.184-185
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio between two coils. Since the recovery characteristics of a superconducting element m the flux-lock type SFCL were dependent on the turns ratio between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. When the applied voltage and load impedance were same, the recovery time of the superconducting element was 0.32sec in case that the turn's ratio between the primary and secondary windings was 63:21. In the meantime, when the turn's ratio of secondary winding increased to 3 times, the recovery time became longer to 0.58sec.

  • PDF

Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films (YBCO 박막을 이용한 배전급 저항형 초전도 한류기)

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Kim, H.M.;Oh, I.S.;Shim, J.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF