• 제목/요약/키워드: quasi-variational inclusion

검색결과 7건 처리시간 0.018초

ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS DEALING WITH (h,η)-PROXIMAL MAPPING

  • Liu, Zeqing;Chen, Zhengsheng;Shim, Soo-Hak;Kang, Shin-Min
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1323-1339
    • /
    • 2008
  • In this paper, a new class of $(h,{\eta})$-proximal for proper functionals in Hilbert spaces is introduced. The existence and Lip-schitz continuity of the $(h,{\eta})$-proximal mappings for proper functionals are proved. A class of generalized nonlinear quasi-variational-like inclusions in Hilbert spaces is introduced. A perturbed three-step iterative algorithm with errors for the generalized nonlinear quasi-variational-like inclusion is suggested. The existence and uniqueness theorems of solution for the generalized nonlinear quasi-variational-like inclusion are established. The convergence and stability results of iterative sequence generated by the perturbed three-step iterative algorithm with errors are discussed.

Sensitivity Analysis for Generalized Nonlinear Implicit Quasi-variational Inclusions

  • Jeong, Jae Ug
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.345-356
    • /
    • 2006
  • In this paper, by using the concept of the resolvent operator, we study the behavior and sensitivity analysis of the solution set for a new class of parametric generalized nonlinear implicit quasi-variational inclusion problem in $L_p(p{\geq}2)$ spaces. The results presented in this paper are new and generalize many known results in this field.

  • PDF

ITERATIVE ALGORITHM FOR COMPLETELY GENERALIZED QUASI-VARIATIONAL INCLUSIONS WITH FUZZY MAPPINGS IN HILBERT SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.451-463
    • /
    • 2010
  • In this paper, we introduce and study a class of completely generalized quasi-variational inclusions with fuzzy mappings. A new iterative algorithm for finding the approximate solutions and the convergence criteria of the iterative sequences generated by the algorithm are also given. These results of existence, algorithm and convergence generalize many known results.

PARAMETRIC GENERALIZED MULTI-VALUED NONLINEAR QUASI-VARIATIONAL INCLUSION PROBLEM

  • Khan, F.A.;Alanazi, A.M.;Ali, Javid;Alanazi, Dalal J.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.917-933
    • /
    • 2021
  • In this paper, we investigate the behavior and sensitivity analysis of a solution set for a parametric generalized multi-valued nonlinear quasi-variational inclusion problem in a real Hilbert space. For this study, we utilize the technique of resolvent operator and the property of a fixed-point set of a multi-valued contractive mapping. We also examine Lipschitz continuity of the solution set with respect to the parameter under some appropriate conditions.

SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • Jeong, Jae-Ug;Kim, Soo-Hwan
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1175-1188
    • /
    • 2009
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, ${\eta$)-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

CONVERGENCE AND STABILITY OF ITERATIVE ALGORITHM OF SYSTEM OF GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSION PROBLEMS USING (𝜃, 𝜑, 𝛾)-RELAXED COCOERCIVITY

  • Kim, Jong Kyu;Bhat, Mohd Iqbal;Shaf, Sumeera
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.749-780
    • /
    • 2021
  • In this paper, we give the notion of M(., .)-𝜂-proximal mapping for a nonconvex, proper, lower semicontinuous and subdifferentiable functional on Banach space and prove its existence and Lipschitz continuity. As an application, we introduce and investigate a new system of variational-like inclusions in Banach spaces. By means of M(., .)-𝜂-proximal mapping method, we give the existence of solution for the system of variational inclusions. Further, propose an iterative algorithm for finding the approximate solution of this class of variational inclusions. Furthermore, we discuss the convergence and stability analysis of the iterative algorithm. The results presented in this paper may be further expolited to solve some more important classes of problems in this direction.