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Abstract. In this paper, we investigate the behavior and sensitivity analysis of a solution

set for a parametric generalized multi-valued nonlinear quasi-variational inclusion problem

in a real Hilbert space. For this study, we utilize the technique of resolvent operator and

the property of a fixed-point set of a multi-valued contractive mapping. We also examine

Lipschitz continuity of the solution set with respect to the parameter under some appropriate

conditions.

1. Introduction

In last 30 years, more attention has been given to grow techniques for the
sensitivity analysis of solutions for various classes of variational inequalities.
The quasi-variational inclusion is a useful and important generalization of a
variational inequality. In view of mathematical and engineering problems,
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sensitivity properties of different classes of variational inequalities can offer
new insight concerning the problem being studied and can stimulate ideas
for solving problems, see for the details and applications [1,4,5,10,15-21,28-
30]. The sensitivity analysis of solutions for variational inequalities have been
studied broadly by many researchers using different methods. By utilizing the
projection technique, Dafermos [5], Ding and Luo [8], Mukherjee and Verma
[22], Park and Jeong [26] and Yen [30] dealt with the sensitivity analysis for
some classes of variational inequalities for single-valued mappings. By using
the resolvent operator technique, Adly [1], Agarwal et al. [2], Ding [6], Fang
and Huang [9], Hassouni and Moudafi [10] and Noor [24] studied the sensitivity
analysis of solutions for some classes of parametric variational inclusions for
single-valued mappings.

Lately, by using techniques of projection and resolvent operator, Agarwal
et al. [3], Ding [7], Huang [11], Kazmi and Khan [12,14], Liu et al. [19], Noor
[25], Peng and Long [27] and Ram [28] examined the behavior and sensitivity
of solutions for some important classes of parametric generalized variational
inclusions for single and multi-valued mappings.

Motivated by the recent research in this direction, here, we consider a para-
metric generalized multi-valued nonlinear quasi-variational inclusion problem
(in short, PGMNQVIP) involving maximal monotone mappings in a real
Hilbert space. Further, using the technique of resolvent operator and the
property of a fixed point set of a multi-valued contractive mapping, we ex-
amine the behavior and sensitivity analysis of a solution set for PGMNQVIP.
Furthermore, under some suitable conditions, Lipschitz continuity of the so-
lution set with respect to the parameter is proved. The technique utilized in
this paper can be used to extend and advance the theorems given by many
researchers (see [1-9,12-14,21,23-27]).

2. Preliminaries

Suppose that H is a real Hilbert space with a norm ‖ · ‖ and an inner
product 〈·, ·〉. C(H) denotes the collection of all nonempty compact subsets of
H and 2H denotes the power set of H. The Pompeiu-Hausdorff metric H(·, ·)
on C(H) is defined by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, A,B ∈ C(H).

First, we review the following concepts and known results.

Definition 2.1. ([9,11-14]) A self-mapping T on H is said to be

(i) monotone, if

〈T (x)− T (y), x− y〉 ≥ 0, for all x, y ∈ H;
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(ii) α-strongly monotone, if there exists a constant α > 0 such that

〈T (x)− T (y), x− y〉 ≥ α‖x− y‖2, for all x, y ∈ H;

(iii) β-Lipschitz continuous, if there exists a constant β > 0 such that

‖T (x)− T (y)‖ ≤ β‖x− y‖, for all x, y ∈ H.

Definition 2.2. ([9,11-14]) A multi-valued mapping M : H → 2H is said to
be

(i) monotone, if

〈u− v, x− y〉 ≥ 0, for all x, y ∈ H, u ∈M(x), v ∈M(y);

(ii) α-strongly monotone, if there exists a constant α > 0 such that

〈u− v, x− y〉 ≥ α‖x− y‖2, for all x, y ∈ H, u ∈M(x), v ∈M(y);

(iii) maximal monotone, if M is monotone and (I + ρM)(H) = H for any
ρ > 0, where I is the identity mapping on H.

Definition 2.3. ([28]) Let W : H → 2H be a maximal monotone mapping.
For any fixed ρ > 0, the mapping JWρ : H → H, defined by

JWρ (x) = (I + ρW )−1(x), for all x ∈ H,

is said to be the resolvent operator of W.

Lemma 2.4. ([28]) If W : H → 2H is a maximal monotone mapping, then
the resolvent operator JWρ : H → H of W is nonexpansive, that is,

‖JWρ (x)− JWρ (y)‖ ≤ ‖x− y‖, for all x, y ∈ H.

Lemma 2.5. ([23]) Let (X, d) be a complete metric space. Suppose that
T : X → C(X) satisfies

H(T (x), T (y)) ≤ θ d(x, y), for all x, y ∈ X, (2.1)

where θ ∈ (0, 1) is a constant. Then the mapping T has fixed point in X.

A mapping T : X → C(X) is said to be θ-H-contraction mapping if it
satisfies above inequality (2.1).

Lemma 2.6. ([18]) Let T1, T2 : X → C(X) be θ-H-contraction mappings on
a complete metric space (X, d). Then

H(F (T1), F (T2)) ≤ (1− θ)−1 sup
x∈X
H(T1(x), T2(x)),

where F (T1) and F (T2) are the sets of fixed points of T1 and T2, respectively.



920 F. A. Khan, A. M. Alanazi, Javid Ali and Dalal J. Alanazi

3. Formulation of problem

Let Ω be a nonempty open subset of H. Let N,M : H×H×H×Ω→ H and
m, f : H × Ω → H be single-valued mappings, and let A,B,C, P,Q,R, T,D,
G, S : H ×Ω→ C(H) be multi-valued mappings. Suppose that W : H ×H ×
Ω → 2H is a multi-valued mapping such that for each given (z, λ) ∈ H × Ω,
W (·, z, λ) : H → 2H is a maximal monotone mapping with

(S(H,λ)−m(H,λ)) ∩ domW (·, z, λ) 6= ∅.
In the entire paper, unless otherwise stated, we will study the following para-

metric generalized multi-valued nonlinear quasi-variational inclusion problem
(PGMNQVIP):

For each fixed parameter λ ∈ Ω, find x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈
B(x(λ), λ), w(λ) ∈ C(x(λ), λ), p(λ) ∈ P (x(λ), λ), q(λ) ∈ Q(x(λ), λ), r(λ) ∈
R(x(λ), λ), t(λ) ∈ T (x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ) and s(λ) ∈
S(x(λ), λ) such that

0 ∈ N(u(λ), v(λ), w(λ), λ)−M(p(λ), q(λ), r(λ), λ)

+f(t(λ), λ) +W (s(λ)−m(n(λ), λ), z(λ), λ). (3.1)

Some special cases:

(i) If M(p(λ), q(λ), r(λ), λ) ≡ 0, then PGMNQVIP (3.1) reduces to the
following parametric quasi-variational inclusion problem: for each fixed
λ ∈ Ω, find x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ), w(λ) ∈
C(x(λ), λ), t(λ) ∈ T (x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ),
s(λ) ∈ S(x(λ), λ) such that

0 ∈ N(u(λ), v(λ), w(λ), λ) + f(t(λ), λ)

+W (s(λ)−m(n(λ), λ), z(λ), λ), (3.2)

similar type problem has been studied by Ram [28].

(ii) If N(u(λ), v(λ), w(λ), λ) ≡ N(u(λ), v(λ), λ) and f(t(λ), λ) ≡ 0, then
problem (3.2) reduces to the following parametric quasi-variational
inclusion problem: for each fixed λ ∈ Ω, find x(λ) ∈ H, u(λ) ∈
A(x(λ), λ), v(λ) ∈ B(x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ),
s(λ) ∈ S(x(λ), λ) such that

0 ∈ N(u(λ), v(λ), λ) +W (s(λ)−m(n(λ), λ), z(λ), λ), (3.3)

which has been introduced and studied by Ding [6].

(iii) If S ≡ g : H × Ω → H is a single-valued mapping; D(x, λ) ≡ x and
m(x, λ) ≡ 0, for all (x, λ) ∈ H × Ω, then problem (3.3) reduces to
the following parametric quasi-variational inclusion problem: for each
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fixed λ ∈ Ω, find x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ),
z(λ) ∈ G(x(λ), λ) such that

0 ∈ N(u(λ), v(λ), λ) +W (g(x(λ), λ), z(λ), λ), (3.4)

which has been introduced and studied by Noor [24,25].

For a suitable choice of the mappings A,B,C, P,Q,R, T,D,G, S,W, m, f
and the space H, it is easy to check that PGMNQVIP (3.1) contains a number
of known classes of parametric variational inclusions (inequalities) studied by
many researchers as special cases (see [1-3,5-8,11-14,21,23-27]).

Now, for each fixed λ ∈ Ω, the solution set S(λ) of PGMNQVIP (3.1) is
denoted as

S(λ) =
{
x(λ) ∈ H : ∃ u(λ) ∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ), w(λ) ∈ C(x(λ), λ),

p(λ) ∈ P (x(λ), λ), q(λ) ∈ Q(x(λ), λ), r(λ) ∈ R(x(λ), λ),

t(λ) ∈ T (x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ),

s(λ) ∈ S(x(λ), λ) such that

0 ∈ N(u(λ), v(λ), w(λ), λ)−M(p(λ), q(λ), r(λ), λ) + f(t(λ), λ)

+W (s(λ)−m(n(λ), λ), z(λ), λ)
}
. (3.5)

In this paper, our main aim is to study the behavior and sensitivity analysis
of the solution set S(λ), and the conditions on mappings A,B,C, P,Q,R, T,
D,G, S,W,m, f, under which the solution set S(λ) of PGMNQVIP (3.1) is
nonempty and Lipschitz continuous with respect to the parameter λ ∈ Ω.

4. Sensitivity analysis of solution set S(λ)

First, we recall the following useful definitions.

Definition 4.1. ([6,12-14]) A multi-valued mapping S : H × Ω → C(H) is
said to be

(i) δ-strongly monotone, if there exists a constant δ > 0 such that

〈s1 − s2, x− y〉 ≥ δ‖x− y‖2,

for all (x, y, λ) ∈ H ×H × Ω, s1 ∈ S(x, λ), s2 ∈ S(y, λ);

(ii) LS-H-Lipschitz continuous, if there exists a constant LS > 0 such that

H(S(x, λ), S(y, λ)) ≤ LS‖x− y‖,

for all (x, y, λ) ∈ H ×H × Ω.
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Definition 4.2. ([12-14]) A multi-valued mapping A : H ×Ω→ C(H) is said
to be (LA, lA)-H-mixed Lipschitz continuous, if there exist constants LA, lA >
0 such that

H(A(x1, λ1), A(x2, λ2)) ≤ LA‖x1 − x2‖+ lA‖λ1 − λ2‖,
for all (x1, λ1), (x2, λ2) ∈ H × Ω.

Definition 4.3. Let A,B,C : H × Ω → C(H) be multi-valued mappings. A
single-valued mapping N : H ×H ×H × Ω→ H is said to be

(i) α-strongly mixed monotone with respect to A, B and C, if there exists
a constant α > 0 such that

〈N(u1, v1, w1, λ)−N(u2, v2, w2, λ), x− y〉 ≥ α‖x− y‖2,
for all (x, y, λ) ∈ H × H × Ω, u1 ∈ A(x, λ), u2 ∈ A(y, λ), v1 ∈
B(x, λ), v2 ∈ B(y, λ), w1 ∈ C(x, λ), w2 ∈ C(y, λ);

(ii) σ-generalized mixed pseudocontractive with respect to A, B and C, if
there exists a constant σ > 0 such that

〈N(u1, v1, w1, λ)−N(u2, v2, w2, λ), x− y〉 ≤ σ‖x− y‖2,
for all (x, y, λ) ∈ H × H × Ω, u1 ∈ A(x, λ), u2 ∈ A(y, λ), v1 ∈
B(x, λ), v2 ∈ B(y, λ), w1 ∈ C(x, λ), w2 ∈ C(y, λ);

(iii) (L(N,1), L(N,2), L(N,3), lN )-mixed Lipschitz continuous, if there exist constants

L(N,1), L(N,2), L(N,3), lN > 0 such that

‖N(x1, y1, z1, λ1)−N(x2, y2, z2, λ2)‖ ≤ L(N,1)‖x1 − x2‖
+ L(N,2)‖y1 − y2‖
+ L(N,3)‖z1 − z2‖
+ lN‖λ1 − λ2‖,

for all (x1, y1, z1, λ1), (x2, y2, z2, λ2) ∈ H ×H ×H × Ω.

Now, we transfer the PGMNQVIP (3.1) into a parametric fixed point prob-
lem.

Theorem 4.4. For each fixed λ ∈ Ω, x(λ) ∈ S(λ) is a solution of PGMNQVIP
(3.1) if and only if there exist u(λ) ∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ), w(λ) ∈
C(x(λ), λ), p(λ) ∈ P (x(λ), λ), q(λ) ∈ Q(x(λ), λ), r(λ) ∈ R(x(λ), λ), t(λ) ∈
T (x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ), s(λ) ∈ S(x(λ), λ) such that
the following relation holds:

s(λ) = m(n(λ), λ)+JW (·,z(λ),λ)
ρ (s(λ)−m(n(λ), λ)−ρN(u(λ), v(λ), w(λ), λ)

+ρM(p(λ), q(λ), r(λ), λ) + f(t(λ), λ)), (4.1)

where ρ > 0 is a constant.
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Proof. For each fixed λ ∈ Ω, by the definition of the resolvent operator

J
W (·,z(λ),λ)
ρ of W (·, z(λ), λ), there exist x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈
B(x(λ), λ), w(λ) ∈ C(x(λ), λ), p(λ) ∈ P (x(λ), λ), q(λ) ∈ Q(x(λ), λ), r(λ) ∈
R(x(λ), λ), t(λ) ∈ T (x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ) and
s(λ) ∈ S(x(λ), λ) such that (4.1) holds if and only if

s(λ)−m(n(λ), λ)−ρN(u(λ), v(λ), w(λ), λ)+ρM(p(λ), q(λ), r(λ), λ)+f(t(λ), λ)

∈ s(λ)−m(n(λ), λ)+ρW (s(λ)−m(n(λ), λ), z(λ), λ). (4.2)

The above inclusion holds if and only if

0 ∈ N(u(λ), v(λ), w(λ), λ)−M(p(λ), q(λ), r(λ), λ)

+f(t(λ), λ) +W (s(λ)−m(n(λ), λ), z(λ), λ).

By the definition of S(λ), we obtain that x(λ) ∈ S(λ) is a solution of PGM-
NQVIP (3.1) if and only if there exist x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈
B(x(λ), λ), w(λ) ∈ C(x(λ), λ), p(λ) ∈ P (x(λ), λ), q(λ) ∈ Q(x(λ), λ), r(λ) ∈
R(x(λ), λ), t(λ) ∈ T (x(λ), λ), n(λ) ∈ D(x(λ), λ), z(λ) ∈ G(x(λ), λ) and
s(λ) ∈ S(x(λ), λ) such that (4.1) holds. �

Remark 4.5. Theorem 4.4 is a generalized variant of Lemma 3.1 of Adly [1],
Lemma 2.1 of Agarwal et al. [3], Theorem 3.1 of Ding [6], Lemma 3.1 of Ding
and Luo [8], Lemma 2.1 of Peng and Long [27], and Theorem 3.1 of Ram [28].

Now, we prove that the following theorem which ensures that the solution
set S(λ) of PGMNQVIP (3.1) is nonempty and closed for each λ ∈ Ω.

Theorem 4.6. Let A,B,C, P,Q,R, T,D,G, S : H × Ω → C(H) be multi-
valued mappings such that A,B,C, P,Q,R, T,D,G and S are H-Lipschitz con-
tinuous in the first argument with constants LA, LB, LC , LP , LQ, LR, LT , LD, LG
and LS, respectively, and let S : H × Ω→ C(H) be δ-strongly monotone. Let
m : H×Ω→ H be (Lm, lm)-mixed Lipschitz continuous and f : H×Ω→ H be
(Lf , lf )-mixed Lipschitz continuous. Let N : H×H×H×Ω→ H be α-strongly
mixed monotone with respect to A, B and C, and (L(N,1), L(N,2), L(N,3))-mixed
Lipschitz continuous and let M : H ×H ×H ×Ω→ H be σ-generalized mixed
pseudocontractive with respect to P , Q and R, and (L(M,1), L(M,2), L(M,3))-
mixed Lipschitz continuous. Suppose that the multi-valued mapping W : H ×
H × Ω → 2H is such that for each fixed (z, λ) ∈ H × Ω, W (·, z, λ) : H → 2H

is a maximal monotone mapping satisfying

(S(H,λ)−m(H,λ)) ∩ dom W (·, z, λ) 6= ∅.

Suppose that there exist constants k1, k2 > 0 such that

‖JW (·,x1,λ1)
ρ (t)− JW (·,x2,λ2)

ρ (t)‖ ≤ k1‖x1 − x2‖+ k2‖λ1 − λ2‖, (4.3)
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for all x1, x2, t ∈ H; λ1, λ2 ∈ Ω, and suppose that there is a constant ρ > 0
such that

θ = k + t(ρ) < 1, (4.4)

where

k := 2
√

1− 2δ + L2
S + 2LmLD + LfLT + k1LG ;

t(ρ) :=
√

1− 2ρ(α− σ) + 2ρ2(L2
N + L2

M );

LN := (LAL(N,1) + LBL(N,2) + LCL(N,3))

and

LM := (LPL(M,1) + LQL(M,2) + LRL(M,3)).

Then, for each λ ∈ Ω, the solution set S(λ) of PGMNQVIP (3.1) is nonempty
and closed.

Proof. For all (x, λ) ∈ H ×Ω, define a multi-valued mapping F : H ×Ω→ 2H

by

F (x, λ) =
⋃
K

G, (4.5)

where

G :=
[
x− s+m(n, λ) + JW (·,z,λ)

ρ (s−m(n, λ)− ρN(u, v, w, λ)

+ρM(p, q, r, λ) + f(t, λ))
]

and

K := {u ∈ A(x, λ), v ∈ B(x, λ), w ∈ C(x, λ), p ∈ P (x, λ), q ∈ Q(x, λ),

r ∈ R(x, λ), t ∈ T (x, λ), n ∈ D(x, λ), z ∈ G(x, λ), s ∈ S(x, λ)}.

For any (x, λ) ∈ H × Ω, since A(x, λ), B(x, λ), C(x, λ), P (x, λ), Q(x, λ),

R(x, λ), T (x, λ), D(x, λ), G(x, λ), S(x, λ) ∈ C(H), and m, f, J
W (·,z,λ)
ρ are

continuous, we know that F (x, λ) ∈ C(H).
Now for each fixed λ ∈ Ω, we prove that F (x, λ) is a multi-valued contractive

mapping. For any (x, y, λ) ∈ H ×H ×Ω and any a ∈ F (x, λ), there exist u1 ∈
A(x, λ), v1 ∈ B(x, λ), w1 ∈ C(x, λ), p1 ∈ P (x, λ), q1 ∈ Q(x, λ), r1 ∈ R(x, λ),
t1 ∈ T (x, λ), n1 ∈ D(x, λ), z1 ∈ G(x, λ) and s1 ∈ S(x, λ) such that

a = x− s1 +m(n1, λ) + JW (·,z1,λ)
ρ (s1 −m(n1, λ)− ρN(u1, v1, w1, λ)

+ρM(p1, q1, r1, λ) + f(t1, λ)). (4.6)

Since A(y, λ), B(y, λ), C(y, λ), P (y, λ), Q(y, λ), R(y, λ), T (y, λ), D(y, λ),
G(y, λ), S(y, λ) ∈ C(H), there exist u2 ∈ A(y, λ), v2 ∈ B(y, λ), w2 ∈ C(y, λ),
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p2 ∈ P (y, λ), q2 ∈ Q(y, λ), r2 ∈ R(y, λ), t2 ∈ T (y, λ), n2 ∈ D(y, λ), z2 ∈
G(y, λ) and s2 ∈ S(y, λ) such that

‖u1 − u2‖ ≤ H(A(x, λ), A(y, λ)) ≤ LA‖x− y‖,

‖v1 − v2‖ ≤ H(B(x, λ), B(y, λ)) ≤ LB‖x− y‖,
‖w1 − w2‖ ≤ H(C(x, λ), C(y, λ)) ≤ LC‖x− y‖,
‖p1 − p2‖ ≤ H(P (x, λ), P (y, λ)) ≤ LP ‖x− y‖,
‖q1 − q2‖ ≤ H(Q(x, λ), Q(y, λ)) ≤ LQ‖x− y‖,
‖r1 − r2‖ ≤ H(R(x, λ), R(y, λ)) ≤ LR‖x− y‖,
‖t1 − t2‖ ≤ H(T (x, λ), T (y, λ)) ≤ LT ‖x− y‖,
‖n1 − n2‖ ≤ H(D(x, λ), D(y, λ)) ≤ LD‖x− y‖,
‖z1 − z2‖ ≤ H(G(x, λ), G(y, λ)) ≤ LG‖x− y‖,
‖s1 − s2‖ ≤ H(S(x, λ), S(y, λ)) ≤ LS‖x− y‖. (4.7)

Let

b = y − s2 +m(n2, λ) + JW (·,z2,λ)
ρ (s2 −m(n2, λ)− ρN(u2, v2, w2, λ)

+ρM(p2, q2, r2, λ) + f(t2, λ)). (4.8)

Then we have b ∈ F (y, λ). It follows that

‖a− b‖ ≤ ‖x− y − (s1 − s2)‖+ ‖m(n1, λ)−m(n2, λ)‖

+ ‖JW (·,z1,λ)
ρ (s1 −m(n1, λ)− ρN(u1, v1, w1, λ)

+ ρM(p1, q1, r1, λ) + f(t1, λ))− JW (·,z2,λ)
ρ (s2 −m(n2, λ)

− ρN(u2, v2, w2, λ) + ρM(p2, q2, r2, λ) + f(t2, λ))‖
≤ ‖x− y − (s1 − s2)‖+ ‖m(n1, λ)−m(n2, λ)‖

+ ‖JW (·,z1,λ)
ρ (s1 −m(n1, λ)− ρN(u1, v1, w1, λ)

+ ρM(p1, q1, r1, λ) + f(t1, λ))

− [JW (·,z1,λ)
ρ (s2 −m(n2, λ)− ρN(u2, v2, w2, λ)

+ ρM(p2, q2, r2, λ) + f(t2, λ))]‖

+ ‖JW (·,z1,λ)
ρ (s2 −m(n2, λ)− ρN(u2, v2, w2, λ)

+ ρM(p2, q2, r2, λ) + f(t2, λ))

− [JW (·,z2,λ)
ρ (s2 −m(n2, λ)− ρN(u2, v2, w2, λ)

+ ρM(p2, q2, r2, λ) + f(t2, λ))]‖
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≤ ‖x− y − (s1 − s2)‖+ ‖m(n1, λ)−m(n2, λ)‖
+ ‖s1 −m(n1, λ)− ρN(u1, v1, w1, λ) + ρM(p1, q1, r1, λ) + f(t1, λ)

− [s2 −m(n2, λ)− ρN(u2, v2, w2, λ) + ρM(p2, q2, r2, λ) + f(t2, λ)]‖
+ k1‖z1 − z2‖
≤ 2‖x− y − (s1 − s2)‖+ 2‖m(n1, λ)−m(n2, λ)‖+ k1‖z1 − z2‖

+ ‖f(t1, λ)− f(t2, λ)‖+ ‖x− y − ρ(N(u1, v1, w1, λ)

−N(u2, v2, w2, λ)−M(p1, q1, r1, λ) +M(p2, q2, r2, λ))‖. (4.9)

Since N is α-strongly mixed monotone and mixed Lipschitz continuous,
M is σ-generalized mixed pseudocontractive and mixed Lipschitz continuous.
Also, A,B,C, P,Q,R are H-Lipschitz continuous, then by using ‖a + b‖2 ≤
2(‖a‖2 + ‖b‖2), we have

‖x−y−ρ(N(u1, v1, w1, λ)−N(u2, v2, w2, λ)−M(p1, q1, r1, λ)+M(p2, q2, r2, λ))‖2

≤ ‖x−y‖2−2ρ
[
〈N(u1, v1, w1, λ)−N(u2, v2, w2, λ)

−M(p1, q1, r1, λ) +M(p2, q2, r2, λ), x− y〉
]

+2ρ2
[
‖N(u1, v1, w1, λ)−N(u2, v2, w2, λ)‖2

+‖M(p1, q1, r1, λ)−M(p2, q2, r2, λ)‖2
]

≤ ‖x−y‖2−2ρ(α−σ)‖x−y‖2+2ρ2
[
(LAL(N,1)+LBL(N,2)+LCL(N,3))

2

+(LPL(M,1)+LQL(M,2)+LRL(M,3))
2
]
‖x−y‖2

≤
(

1− 2ρ(α− σ) + 2ρ2[(LAL(N,1) + LBL(N,2) + LCL(N,3))
2

+(LPL(M,1) + LQL(M,2) + LRL(M,3))
2]
)
‖x− y‖2. (4.10)

Since S is δ-strongly monotone and LS-H-Lipschitz continuous, we have

‖x− y − (s1 − s2)‖2 = ‖x− y‖2 − 2〈x− y, s1 − s2〉+ ‖s1 − s2‖2

≤ ‖x− y‖2 − 2δ‖x− y‖2 + [H(S(x, λ), S(y, λ))]2

≤ ‖x− y‖2 − 2δ‖x− y‖2 + L2
S‖x− y‖2

and hence,

‖x− y − (s1 − s2)‖ ≤
√

1− 2δ + L2
S ‖x− y‖. (4.11)

By the mixed Lipschitz continuity of m and the H-Lipschitz continuity of
D, we have
‖m(n1, λ)−m(n2, λ)‖ ≤ Lm‖n1−n2‖ ≤ LmH(D(x, λ), D(y, λ))

≤ LmLD‖x− y‖. (4.12)



Parametric generalized multi-valued nonlinear quasi-variational inclusion problem 927

By the H-Lipschitz continuity of G, we have

‖z1 − z2‖ ≤ H(G(x, λ), G(y, λ)) ≤ LG‖x− y‖. (4.13)

By the mixed Lipschitz continuity of f and the H-Lipschitz continuity of
T , we have

‖f(t1, λ)−f(t2, λ)‖ ≤ Lf‖t1−t2‖ ≤ Lf H(T (x, λ), T (y, λ)) ≤ LfLT ‖x−y‖.
(4.14)

Combining (4.9)-(4.14), we obtain

‖a− b‖ ≤ θ ‖x− y‖, (4.15)

where θ := k + t(ρ) ; k := 2
√

1− 2δ + L2
S + 2LmLD + LfLT + k1LG ;

t(ρ) :=
√

1− 2ρ(α− σ) + 2ρ2(L2
N + L2

M ) ;

LN := (LAL(N,1) + LBL(N,2) + LCL(N,3))

and
LM := (LPL(M,1) + LQL(M,2) + LRL(M,3)).

It follows from condition (4.4) that θ < 1. Hence, we have

d(a, F (y, λ)) = inf
b∈F (y,λ)

‖a− b‖ ≤ θ‖x− y‖.

Since a ∈ F (x, λ) is arbitrary, we obtain

sup
a∈F (x,λ)

d(a, F (y, λ)) ≤ θ‖x− y‖.

By using same argument, we can prove that

sup
b∈F (y,λ)

d(F (x, λ), b) ≤ θ‖x− y‖.

By the definition of the Pompeiu-Hausdorff metric H on C(H), and for all
(x, y, λ) ∈ H ×H × Ω, we obtain that

H
(
F (x, λ), F (y, λ)

)
≤ θ‖x− y‖, (4.16)

which shows that F (x, λ) is a uniform θ-H-contraction mapping with respect
to λ ∈ Ω. By Lemma 2.5, for each λ ∈ Ω, F (x, λ) has a fixed point x(λ) ∈ H,
that is, x(λ) ∈ F (x(λ), λ) and hence Theorem 4.4 ensures that x(λ) ∈ S(λ) is
a solution of PGMNQVIP (3.1) and so S(λ) 6= ∅.

Further, for each λ ∈ Ω, let {xn} ⊂ S(λ) with lim
n→∞

xn = x0, we have

xn ∈ F (xn, λ) for all n ≥ 1. By virtue of (4.16), we have

d(x0, F (x0, λ)) ≤ ‖x0 − xn‖+H(F (xn, λ), F (x0, λ))

≤ (1 + θ)‖xn − x0‖ → 0 as n→∞,
that is, x0 ∈ F (x0, λ) and hence x0 ∈ S(λ). Thus S(λ) is a closed set in H. �
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Next, we show that the solution set S(λ) of PGMNQVIP (3.1) isH-Lipschitz
continuous for each λ ∈ Ω.

Theorem 4.7. Let A,B,C, P,Q,R, T,D,G and S be H-mixed Lipschitz con-
tinuous with pairs of constants (LA, lA), (LB, lB), (LC , lC), (LP , lP ), (LQ, lQ),
(LR, lR), (LT , lT ), (LD, lD), (LG, lG) and (LS , lS), respectively. Let N be α-
strongly mixed monotone with respect to A, B and C, and (L(N,1), L(N,2), L(N,3),
lN )-mixed Lipschitz continuous, let M be σ-generalized mixed pseudocontrac-
tive with respect to P , Q and R, and (L(M,1), L(M,2), L(M,3), lM )-mixed Lips-
chitz continuous. Let m, f,W be same as in Theorem 4.6 and condition (4.4)
holds. Then for each λ ∈ Ω, the solution set S(λ) of PGMNQVIP (3.1) is a
H-Lipschitz continuous mapping.

Proof. In view of Theorem 4.6, for each λ, λ̄ ∈ Ω, S(λ) and S(λ̄) are both
nonempty and closed subsets of H. Again in view of Theorem 4.6, we conclude
that F (x, λ) and F (x, λ̄) are multi-valued θ-H-contraction mappings with same
contractive constant θ ∈ (0, 1). From Lemma 2.6, we get

H(S(λ), S(λ̄)) ≤
( 1

1− θ

)
sup
x∈H

H(F (x, λ), F (x, λ̄)). (4.17)

Taking any a ∈ F (x, λ), there exist u(λ) ∈ A(x, λ), v(λ) ∈ B(x, λ), w(λ) ∈
C(x, λ), p(λ) ∈ P (x, λ), q(λ) ∈ Q(x, λ), r(λ) ∈ R(x, λ), t(λ) ∈ T (x, λ), n(λ) ∈
D(x, λ), z(λ) ∈ G(x, λ), s(λ) ∈ S(x, λ) such that

a = x− s(λ) +m(n(λ), λ) + JW (·,z(λ),λ)
ρ (s(λ)−m(n(λ), λ)

−ρN(u(λ), v(λ), w(λ), λ)+ρM(p(λ), q(λ), r(λ), λ)+f(t(λ), λ)). (4.18)

It is easy to see that there exist u(λ̄) ∈ A(x, λ̄), v(λ̄) ∈ B(x, λ̄), w(λ̄) ∈
C(x, λ̄), p(λ̄) ∈ P (x, λ̄), q(λ̄) ∈ Q(x, λ̄), r(λ̄) ∈ R(x, λ̄), t(λ̄) ∈ Q(x, λ̄), n(λ̄) ∈
D(x, λ̄), z(λ̄) ∈ G(x, λ̄) and s(λ̄) ∈ S(x, λ̄) such that

‖u(λ)− u(λ̄)‖ ≤ H(A(x, λ), A(x, λ̄)) ≤ lA‖λ− λ̄‖,

‖v(λ)− v(λ̄)‖ ≤ H(B(x, λ), B(x, λ̄)) ≤ lB‖λ− λ̄‖,
‖w(λ)− w(λ̄)‖ ≤ H(C(x, λ), C(x, λ̄)) ≤ lC‖λ− λ̄‖,
‖p(λ)− p(λ̄)‖ ≤ H(P (x, λ), P (x, λ̄)) ≤ lP ‖λ− λ̄‖,
‖q(λ)− q(λ̄)‖ ≤ H(Q(x, λ), Q(x, λ̄)) ≤ lQ‖λ− λ̄‖,
‖r(λ)− r(λ̄)‖ ≤ H(R(x, λ), R(x, λ̄)) ≤ lR‖λ− λ̄‖,
‖t(λ)− t(λ̄)‖ ≤ H(T (x, λ), T (x, λ̄)) ≤ lT ‖λ− λ̄‖,
‖n(λ)− n(λ̄)‖ ≤ H(D(x, λ), D(x, λ̄)) ≤ lD‖λ− λ̄‖,
‖z(λ)− z(λ̄)‖ ≤ H(G(x, λ), G(x, λ̄)) ≤ lG‖λ− λ̄‖,
‖s(λ)− s(λ̄)‖ ≤ H(S(x, λ), S(x, λ̄)) ≤ lS‖λ− λ̄‖. (4.19)
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Let

b = x− s(λ̄) +m(n(λ̄), λ̄) + JW (·,z(λ̄),λ̄)
ρ (s(λ̄)−m(n(λ̄), λ̄)

−ρN(u(λ̄), v(λ̄), w(λ̄), λ̄)+ρM(p(λ̄), q(λ̄), r(λ̄), λ̄)+f(t(λ̄), λ̄)).
(4.20)

Then b ∈ F (x, λ̄).
Since N and M are mixed Lipschitz continuous and in view of (4.8), (4.18)-

(4.20) and with l = s(λ̄) − m(n(λ̄), λ̄) − ρN(u(λ̄), v(λ̄), w(λ̄), λ̄) + ρM(p(λ̄),
q(λ̄), r(λ̄), λ̄) + f(t(λ̄), λ̄), we have

‖a− b‖ ≤ ‖s(λ)− s(λ̄)‖+ ‖m(n(λ), λ)−m(n(λ̄), λ̄)‖

+ ‖JW (·,z(λ),λ)
ρ (s(λ)−m(n(λ), λ)− ρN(u(λ), v(λ), w(λ), λ)

+ ρM(p(λ), q(λ), r(λ), λ) + f(t(λ), λ))− JW (·,z(λ),λ)
ρ (l)‖

+ ‖JW (·,z(λ),λ)
ρ (l)− JW (·,z(λ̄),λ)

ρ (l)‖

+ ‖JW (·,z(λ̄),λ)
ρ (l)− JW (·,z(λ̄),λ̄)

ρ (l)‖
≤ 2‖s(λ)− s(λ̄)‖+ 2‖m(n(λ), λ)−m(n(λ̄), λ̄)‖

+ ‖f(t(λ), λ)− f(t(λ̄), λ̄)‖
+ ρ‖N(u(λ), v(λ), w(λ), λ)−N(u(λ̄), v(λ̄), w(λ̄), λ̄)‖
+ ρ‖M(p(λ), q(λ), r(λ), λ)−M(p(λ̄), q(λ̄), r(λ̄), λ̄)‖
+ k1‖z(λ)− z(λ̄)‖+ k2‖λ− λ̄‖.

(4.21)

By the H-mixed Lipschitz continuity of S in λ ∈ Ω, we have

‖s(λ)− s(λ̄)‖ ≤ H(S(x, λ), S(x, λ̄)) ≤ lS‖λ− λ̄‖. (4.22)

By the mixed Lipschitz continuity of m and H-mixed Lipschitz continuity
of D, we have

‖m(n(λ), λ)−m(n(λ̄), λ̄)‖ ≤ ‖m(n(λ), λ)−m(n(λ̄), λ)‖
+ ‖m(n(λ̄), λ)−m(n(λ̄), λ̄)‖
≤ Lm‖n(λ)− n(λ̄)‖+ lm‖λ− λ̄‖
≤ LmH(D(x, λ), D(x, λ̄)) + lm‖λ− λ̄‖
≤ (LmlD + lm) ‖λ− λ̄‖.

(4.23)

By the mixed Lipschitz continuity of f and H-mixed Lipschitz continuity of
T , we have
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‖f(t(λ), λ)− f(t(λ̄), λ̄)‖ ≤ ‖f(t(λ), λ)− f(t(λ̄), λ)‖
+ ‖f(t(λ̄), λ)− f(t(λ̄), λ̄)‖
≤ Lf‖t(λ)− t(λ̄)‖+ lf‖λ− λ̄‖
≤ Lf H(T (x, λ), T (x, λ̄)) + lf‖λ− λ̄‖

≤ (Lf lT + lf ) ‖λ− λ̄‖. (4.24)

By the mixed Lipschitz continuity of N , we have

‖N(u(λ), v(λ), w(λ), λ)−N(u(λ̄), v(λ̄), w(λ̄), λ̄)‖
≤ L(N,1)‖u(λ)− u(λ̄)‖+ L(N,2)‖v(λ)− v(λ̄)‖

+ L(N,3)‖w(λ)− w(λ̄)‖+ lN‖λ− λ̄‖

≤ (lAL(N,1) + lBL(N,2) + lCL(N,3) + lN ) ‖λ− λ̄‖. (4.25)

Also, by the mixed Lipschitz continuity of M , we have

‖M(p(λ), q(λ), r(λ), λ)−M(p(λ̄), q(λ̄), r(λ̄), λ̄)‖
≤ L(M,1)‖p(λ)− p(λ̄)‖+ L(M,2)‖q(λ)− q(λ̄)‖

+ L(M,3)‖r(λ)− r(λ̄)‖+ lM‖λ− λ̄‖

≤ (lPL(M,1) + lQL(M,2) + lRL(M,3) + lM ) ‖λ− λ̄‖. (4.26)

By the H-mixed Lipschitz continuity of G, we have

‖z(λ)− z(λ̄)‖ ≤ H(G(x, λ), G(x, λ̄)) ≤ lG ‖λ− λ̄‖. (4.27)

In view of (4.21)-(4.27), we obtain that

‖a− b‖ ≤ θ1 ‖λ− λ̄‖, (4.28)

where θ1 := 2(lS +LmlD+ lm)+Lf lT + lf +k1lG+k2 +ρ(lAL(N,1) + lBL(N,2) +
lCL(N,3) + lN + lPL(M,1) + lQL(M,2) + lRL(M,3) + lM ). Hence, we obtain

sup
a∈F (x,λ)

d(a, F (x, λ̄)) ≤ θ1‖λ− λ̄‖.

By using an analogous argument as above, we can have

sup
b∈F (x,λ̄)

d(F (x, λ), b) ≤ θ1‖λ− λ̄‖.

Hence, it follows that

H(F (x, λ), F (x, λ̄)) ≤ θ1‖λ− λ̄‖.
By Lemma 2.6, we obtain

H
(
S(λ), S(λ̄)

)
≤
( θ1

1− θ

)
‖λ− λ̄‖.

This shows that S(λ) is H-Lipschitz continuous at λ ∈ Ω. �
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5. Discussion

For k1, k2, ρ > 0, it is clear that α > σ; LS >
√

2δ − 1; k ∈ (0, 1) and∣∣∣∣ρ− (α− σ)

2(L2
N + L2

M )

∣∣∣∣ >
√

(α− σ)2 − 2(L2
N + L2

M )

2(L2
N + L2

M )
; α > σ +

√
2(L2

N + L2
M ),

where

LN := (LAL(N,1) + LBL(N,2) + LCL(N,3))

and

LM := (LPL(M,1) + LQL(M,2) + LRL(M,3)).

Further, θ ∈ (0, 1) and condition (4.4) of Theorem 4.6 holds for some suitable
values of constants, for example, α = 4, σ = δ = LS = 2.5, k1 = 0.2, k2 = 0.3.

6. Conclusion

This paper is based on the study of the behavior and sensitivity analysis
of a solution set for PGMNQVIP (3.1). For this, we used the technique of
resolvent operator of maximal monotone mappings along with the property
of a fixed point set of a multi-valued contractive mapping in a real Hilbert
space. Since the PGMNQVIP (3.1) includes many known classes of parametric
generalized variational inclusions as special cases, Theorems 4.6-4.7 improve
and generalize the known results (see [1-3,5-8,11-14,21,23-27]). The concepts
and results presented in this paper will be very helpful in the theoretical
study of behavior of solutions for some classes of nonlinear operator equation
problems.

Acknowledgments: The authors would like to thank the anonymous referee
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