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ITERATIVE ALGORITHM FOR COMPLETELY
GENERALIZED QUASI-VARIATIONAL INCLUSIONS WITH
FUZZY MAPPINGS IN HILBERT SPACES

JAE UG JEONG

ABSTRACT. In this paper, we introduce and study a class of completely
generalized quasi-variational inclusions with fuzzy mappings. A new it-
erative algorithm for finding the approximate solutions and the conver-
gence criteria of the iterative sequences generated by the algorithm are
also given. These results of existence, algorithm and convergence general-
ize many known results.
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1. Introduction

In 1994, Haussouni and Moudafi [6] introduced and studied a class of varia-
tional inclusions and developed a perturbed algorithm for finding approximate
solutions of the variational inclusions. Adly [1], Huang (7], Kazmi [9] and Ding
[5] extended the results in [6] to generalized variational inclusions and generalized
quasi-variational inclusions.

In 1989, Chang and Zhu [2] introduced and studied a class of variational in-
equalities for fuzzy mappings. Since then, several classes of variational inequali-
ties (inclusions) with fuzzy mappings were considered by Chang and Huang (3],
Noor [11], Huang [8], Park and Jeong [12-17].

In this paper, we study a class of completely generalized quasi-variational
inclusions with fuzzy mappings. An innovative iterative algorithm for finding
approximate solutions is suggested and analyzed. The convergence criteria of the
algorithm is also given. These results of existence of generalized quasi-variational

Received May 22, 2009. Accepted October 14, 2009.
This work was supported by Dong-eui University Grant(2009AA088).
© 2010 Korean SIGCAM and KSCAM.

451



452 J. U. Jeong

inclusions generalize many known results of generalized quasi-variational inequal-
ities with fuzzy mappings in literature [4,6,13-16].

2. Preliminaries

Let H be a real Hilbert space with a norm || - || and an inner product (-, -).
Let F(H) be a collection of all fuzzy sets over H. A mapping F : H — F(H)
is said to be a fuzzy mapping. For each x € H, F(z) (denote it by Fy in the
sequel) is a fuzzy set on H and F;(y) is the membership function of y in F.

A fuzzy mapping F : H — F(H) is said to be closed if for each z € H, the
function y — F,(y) is upper semicontinuous, i.e., for any given net {y,} C H
satisfying yo — yo € H, limsup Fy(y,) < Fz(yo). For A € F(H) and A € [0,1],

o

the set (A)) = {x €H:Alz) > )\} is called a A-cut set of A.

A closed fuzzy mapping A : H — F(H) is said to be satisfy the condition ()
if there exists a function a : H — [0,1] such that for each z € H, (Az)q(r) Is a
nonempty bounded subset of H. It is clear that if A is a closed fuzzy mapping
satisfying the condition (x), then for each z € H, the set (A;)a(z) € CB(H),
where CB(H) denotes the family of all nonempty bounded closed subsets of H.
In fact, let {ya}aer C (Az)a(z) be a net and yo, — yo € H. Then (Az)(ya) 2
a(z) for each o € T'. Since A is closed, we have

Az(yo) = limsup A (yo) > a(z).
ael’

This implies yo € (Az)q(z) and s0 (Ag)a(z) € CB(H).

Let A,B,C,D,E : H — F(H) be five closed fuzzy mappings satisfying the
condition (*). Then there exist five functions a,b,c,d,e : H — [0,1] such that
for each x € H, we have

(Az)a(z)’ (Bx)b(x)7 (Cx)c(x)v (Dz)d(z)7 (Ez)e(z) € CB(H)

Therefore we can define five set-valued mappings 4, B,C,D,E : H — CB(H)
by .

A(z) = (As)a@), B(@) = (Baly(a), C(2) = (Co)ega),

D(x) = (Dz)d(m)?E(z) = (Ex)e(Z)
for each z € H. In the sequel, A, B,C,D and E are called the set-valued
mappings induced by the fuzzy mappings A, B, C, D and E, respectively.

Let M : H - H, N: HxH — H and f,g : H — H be single-valued
mappings. Let A, B,C, D, E : E — F(H) be fuzzy mappings and let a, b, ¢,d, e:
H — [0,1] be given functions. Let ¢ : H x H — R U {+o0} be a functional
such that for fixed z € H,  — ¢(z, z) is a proper convex lower semicontinuous
functional with g(H) N domdp(-, z) # ¢. Let

(1) b{x,y) is linear in first argument,
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(2) b(x,y) is bounded, i.e., there exists a constant v > 0 such that
b(z,y) < vizllyll,
(3) forallx,y,z€ H
b(z,y) — bz, 2) < b(z,y — 2).

In this paper, we consider the following completely generalized quasi-variational
inclusion problem with fuzzy mappings (CGQVIP):

Find z,u,v,w,y, 2 € H such that A,(u) > a(x), B.(v) > b(z), Cx(w) > c(z),
Da(y) > d(), Ea(7) > e(x) and
(M(fw) = N(v,w),h - g(2)) + b(y, h) = b(y, 9(=))
z Qp(g(x)az)_@(h’ 2)7 Vh € H. (21)

(I) If M = I is the identity mapping, then (CGQVIP) reduces to the following
generalized quasi-variational inclusion problem with fuzzy mapping:

Find z,u,v,w,y, z € H such that A,(u) > a(x), B:(v) > b(z), Cz(w) = c(x),
D;(y) > d(z), Ez(2) > e(z) and

(#(w) = N(v,w), h ~ g(x)) + bly, h) = b(y: 9(a))
«p(g(:}:), Z) - QO(h, Z)a Vh € H. (22)

%

(I1) If A,B,C,D,E : H — CB(H) are set-valued mappings, we can define
the fuzzy mapping A, B,C,D,D,E : H — F(H) by

T XAz TP XB)y T 7X@y %7 Xbar)y T XE@)y
where X 3,1, Xg () X6y XD(z)» XE(y) r€ the characteristic functions of A(x),
B(z), C(z), D(z) and E(z), respectively. Taking a(z) = b(z) = c(z) = d(z) =
e(z) =1 for x € H, the problem (2.1) is equivalent to the following problem:

Find z € H, u € A(z), v € B(z), w € C(z), y € D(z), and 2 € E(z) such
that

(M(fW) = N(v,w),h - g(z)) + b(y, h) = b(y, 9(c)
> o(g(x), z) — ¢(h, 2), Yhe H.

(IIT) If b(z,y) = 0 for all (z,y) € H x H, then problem (2.2} is reduces to the
following problem:
Find x,u,v,w,y, 2 € H such that A (u) > a(z), B.(v) > b(z), Ce{w) 2 c(x),
D, (y) > d(z), Fz(z) > e(z) and
() = Nww),h—g@)) 2 plg@),2) ~ p(h,2), YheH.  (23)

The problem (2.3) includes many generalized quasivariational inclusion problems
considered in [4,6].
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(vi) If K : H — 2% is a set-valued mapping such that each K(z) is a closed
convex subset of H and for each fixed z € H, ¢(-,2) = Ix(.(-) is the indicate
function of K(z), then the problem (2.2) reduces to the following problem:

Find z,u,v,w,y, z € H such that A,(u) > a(z), B;(v) > b(z), Cz(w) > c(z),
D:(y) 2 d(z), Ex(z) > e(z) and g(z) € K(z),
(F(w) = N(u,v), A= () +b(y, h) — bly, 9(2)) 2 0, Vh € K(2).

Definition 2.1. A mapping f: H — H is called
(i) Lipschitz continuous if there exists a constant [ > 0 such that

(@) = f@ll < Uz —yll, Vz,yeH,

(ii) strongly monotone if there exists a constant r > 0 such that
(f(x) = fly),z —y) 2 rllz—yl? Vz,yeH.

Definition 2.2. A set-valued mapping A : H — CB(H) is said to be Lipschitz
continuous if there exists a constant § > 0 such that

H(A(z), A(y)) < dllz—yll, Ve,yeH,
where H(-,-) denotes the Hausdorff metric on CB(H).
Definition 2.3. Let E: H — 27 and N : H x H — H be mappings.

(i) E is said to be a-strongly monotone if there exists a constant a > 0 such
that

(U1 — ug, T1 — 22) > allz1 — z2||?, Vz1,72 € Hyuy € E(z1),uz € E(w2),

(ii) N(-,-) is said to be a-relaxed Lipschitz with respect to E in the first
argument if there exists a constant 8 > 0 such that

(N, ) = Nuz, )21 - 22) < ~Bllar ~ 2l
V.Z'l,.rz € Hu € E(J)l),’UQ S E(:L‘g)

(iii) N(-,-) is said to be y-Lipschitz continuous in the first argument if there
exists a constant v > 0 such that

[NV (u1, ) = N(ug, )| < yllur —uoll, VYui,uq € H.

In a similar way, we can define the ¢-Lipschitz continuous of N(-,-) in the
second argument.

3. Existence and algorithms of solutions

In this section, by using the resolvent operator technique, we first transfer the
problem (2.1) to a fixed point problem. Next, an existence theorem of solutions
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for the problem (2.1) is proved and a new iterative algorithm to compute approx-
imate solutions of the problem (2.1) is suggested and analyzed. The convergence
of the iterative sequence generated by the new algorithm is also proved.

In order to prove our main theorems we need the following concepts and
results ( see [18]).

Definition 3.1. Let X be a Banach space with the dual space X* and let
¢ : X — RU{+0o0} be a proper functional. Then ¢ is said to be subdifferentiable
at a point x € X if there exists an f* € X* such that

@(y)_(p(‘r)2<f*7y_x>v VyeX7
where f* is called a subgradient of ¢ at x. The set of all subgradient of ¢ at x
is denoted by dp(x). The mapping 9y : X — 2% defined by
dp(a) = {1 € X" o) —pla) 2 (f'y—3), VyeX|
is said to be the subdifferential of .

Definition 3.2. Let H be a Hilbert space and let G : H — 2 be a maximal
monotone mapping. For any fixed p > 0, the mapping Jf : H — H defined by

JS (@)= +pG)(z), YzeH

is said to be the resolvent operator of GG, where I is the identity mapping on H.

Lemma 3.1([18]). Let X be a reflexive Banach space endowed with a strictly
convex norm and ¢ : X — RU {400} be a proper convexr lower semicontinuous
function. Then Op : X — 2% is a mazimal monotone mapping.

Lemma 3.2([18]). Let G : H — 2% be a mazimal monotone mapping. Then
the resolvent operator Jf :H — H of G is nonexpansive, i.e.,

175 (@) = JZ W)l < llz = yll,  Ve,y e H.

Lemma 3.3([5]). Letb: H x H — R be a real function satisfying the condition
(1)-(3) mentioned before. Then for each y € H there exists a unique point
k(y) € H such that

b(z,y) = (k{y),z), Yz e H
and
Ik(y) = k()| <vlly—=, Vyze€H,
1.e., the mapping k : H — H 1is Lipschitz continuous.

Theorem 3.1. (z,u,v,w,y, z) is a solution of the problem (2.1) if and only if
(z,u,v,w,y, z) satisfies the following relation:

9(@) = I g(w) = pM(f(w) = N(w,w) + k)], (D)
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where
u€ A(z),ve B(x),we C(z),y € D(z),z € E(z), (k(y), z) = b(z,y)
forallz € H and p > 0 is a constant.
Proof. Suppose that (z,u,v,w,y, z) is a solution of the problem (2.1). Then
u € A(z), v € B(z), we C(z), y € D(z) and z € E(z) satisfy
(M(F() = Nw,w),h = g(z)) +b(y, h) ~ b(y, (z))

> ¢(9(x), 2) — ¢(h,2), Vhe H. (32)

By Lemma 3.3, we see that
b(h,y) — b(g(), y) = b(h — g(), y)
= (k(y),h — g(z))

for all h € H. Hence the relation (3.2) holds if and only if

e(h,y) — o(g9(z),y) > (N(v,w) — M(f(u)) — k(y),h — g(z)), Vh€ H-(3 .

The relation (3.3) holds if and only if
N(v,w) — M(f(u)) - k(y) € 0p(-, 2)(g())- (3.4)
From the definition of J£'*) the relation (3.4) holds if and only if

o(z) = J¢0) [g(@) = p(M(F(w) - N(w,w) + k)],

where (k(y),z) = b(z,y) for all z € H and p > 0 is a constant. Hence we get
that (z,u,v,w,y,2) is a solution of the problem (2.1) if and only if u € A(x),
v e B(z), we Cz), ye D(z) and z € E(z) satisfy (3.1). This completes the
proof of Theorem 3.1. 0

Remark 3.1. We observe that (3.1) can be rewritten as following;
2=~ g(e) + I3 [g@) = p(M(F(w) = N(v,w) + k(y))]

This fixed point formulation enables us to suggest the following iterative algo-
rithm for solving the problem (2.1).

Algorithm 3.1. Let A,B,C,D,FE : H — F(H) be closed fuzzy mappings
satisfying the condition (x) and A, B,C,D,E : H — CB(H) be the set-valued
mappings induced by the fuzzy mappings A, B, C, D, E, respectively.

Let N: HxH — Hand M, f,g: H— H be single-valued mappings. Let
b: H x H — R satisfy the conditions (1)-(3) and ¢ : H x H — R U {+0o0}
be proper convex lower semicontinuous on H in the first argument with g(H)N
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dom(9yp(, 2)) # ¢ for all z € H. For given zo € H, ug € /Nl(xo), vo € B(zo),
wo € C(x0), yo € D(x0), 20 € E(xyp), let

o1 = 0 = g(wo) + JZ#C= [glao) — p(M(F(uo)) — N(va, wo) + k(uo))].

By Nadler’s theorem ([10]), there exist u1 € A(z1), v1 € Blz1), w1 € C(zy),
y1 € D(z1) and 21 € E(z1) such that

fuo —usfl < (14 DH(A(0), A1),
fvo—ull < 1+ DHBo), B(z1)),
lwo —will < 1+ 1)H(C(xo), Clz1)),
lvo —wmll < (1+DH(D(=o), D(z1)),
lzo — 21l < (14 1)H(E(xo), E(z1)).

Let

To = T3 ~ g(fl) + J[?@("Zl)

—

g(@) = p(M(f(ur) = N(vr,wn) + k()]

Continuing this way, we can define the sequences {z,}, {un}, {vn}, {wn}, {yn}
and {z,} which satisfy the following conditions:

Tni1 = Tn—g(zn)+J0P05) [g(:vn)-— p(M(f(un))— N (vn, wn)+k(yn))}, (3.6)

tn € A(zn), [tin — tinsa]| < (1 - )ﬁ(A(:cn>,A<mn+1)),

n-+1
_ 1 L
vn € Bl@n), [lom — vnsil] < (1 n ) F(B(en), Blzne)),
n+1
~ 1 . -
W € Clan)s Nwn — wops]) < (1 i m) (C(an), Clenss),  (3.7)
. 1 L .
U € Dien)s N — gl < (1 N ——) (D(@n), D(ens1)),
n-+1
. 1 o .
€ B, w20l = (14 =7 ) BB Ewn)
n+1
forn=0,1,2,---, where p > 0 is a constant.

Now we establish the existence of solutions for the problem (2.1) and conver-
gence of the iterative sequence generated by the Algorithms 3.1.

Theorem 3.2. Let A, B,C, D, E: H — F(H) be closed fuzzy mappings satisfy-
ing the condition (x) and A, B, C, D, E: H — CB(H) be set-valued mappings
induced by the fuzzy mappings A, B, C, D and E, respectively.

Let A, B, C, D and E be Aa-Lipschitz continuous, Ap-Lipschitz continu-
ous, Ac-Lipschitz continuous, Ap-Lipschitz continuous and Ag-Lipschitz con-
tinuous, respectively. Let M : H — H be e-Lipschitz continuous, f : H — H
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be y-Lipschitz continuous, g : H — H be §-strongly monotone and o-Lipschitz
continuous. _

Let N: H x H — H be a-relaxed Lipschitz continuous with respect to B and
B-Lipschitz continuous in the first argument and &-Lipschitz continuous in the
second argument.

Letb: H x H — R be a function satisfying the conditions (1)-(3) mentioned
before and let k : H — H be n-Lipschitz continuous. Let p : Hx H — RU{+o00}
be proper convex lower semicontinuous on H in the first argument with g(H) N
dom(D¢(-, 2)) # ¢ for all z € H such that

|2eev@) -~ 1279 @)| < ully—2ll, VayzeH @)

Suppose that there exists a constant p > 0 satisfying

(3.9)

‘p_ a*(l—k)ql < \/[0‘_(1“’“)‘1]2—(p2—q2)k(2-k)

p2_q2 p2_q2 ’

k= 2y/1-204+8+prg <1,
p = BAB>evAa+EAc+nip =g,
(1= k)g+/(p* — ¢2)k(2 — k).

\%

(a7

Then the iterative sequences {zn}, {un}, {vn}, {wn}, {yn} and {z.} gener-
ated by Algorithm 3.1 converge strongly to =, u,v,w,y and z, respectively and
(z,u,v,w,y,z) is a solution of the completely generalized quasi-variational in-
clusion problem with fuzzy mappings (2.1).

Proof. By the Algorithm 3.1, Lemma 3.2 and the condition (3.8), we have

@nt1 = 2l
20— 9(@n) + JZ#C ) [g(wn) = (M (F(un)) = N(vn, wn) + k(yn))
— (@n-1 = g(@n-1) + JZPO D g(zn1) — p(M(f(tn-1))

= N(va—t,wn-1) + k(ga-2))

<]

Zn = Tn-1 = (9(z0) = 9(an 1))
T2 g(20) — p(M(f(un)) = N(vn, wn) + k(yn))]

= I (1) = M (f(n-1)) = N(wno1,wn-1) + b))

+|
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|25 = g(@n1) = M (un-1)) = N (v 1,200 1) + k(gn-1)]

= P g 1) = p(M(fn-1)) = N (vt wa1) + blyns)]|

< fon = #n-1 = (9(@0) = g(zn-))

+lo(@n) = PO (F(un)) = N(vn,100) + ()

= [9(@n-1) = P (F(un-1)) = N (o1, w00-1) + b(@n-1)]|| + 820 = 20 |
< 2z — @nms = (9lan) = 9(@as))|| + I (Fun) = M(Fn-))]

+ ‘ o — Ty + (N (Upy wn) — N(n_1, wn))H

|| N a1, 00) = N1, w0 + pllE(@) = (@a-2)ll + sllzn ol
3.10

Since g is é-strongly monotone and o-Lipschitz continuous, we see that

‘ Tn ~ Tno1 — (g(zn) — g(xn_l))H <VI=204 8% 2n — Znoall.  (3.11)

Since M : H — H is e-Lipschitz continuous, f : H — H is y-Lipschitz continu-
ous and A : H — CB(H) is A4-Lipschitz continuous, we obtain

[ptr) = dtstnap| < o (14 1) FCAG) Al )
<o (14 1) w322

Since N(-,-) is a-relaxed Lipschitz continuous with respect to B, B-Lipschitz
continuous in the first argument and B is Ap-Lipschitz continuous, we obtain

2
Tp — Tp-1+ ﬂ(N(Un, wn) - N(Un—lywn))H

= |lzn — zp1l|* + 2p<N(vn,wn) — N(Up—1,Wn), Tn — xn—1>

2
+p2HN(vn,wn) — N{vp—1,wy)

< Yo = anealf = 2paln — 5o+ 0202 | (14 1) F(B () Bumnr

2
< (1 — 2pa + p B2 0% (1 + %) ) Zn — Zn|* (3.13)

Using &-Lipschitz continuous of N (-, -) in the second argument and Ac-Lipschitz
continuous of C, we obtain
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¥ ams, wn) = N (a1, w0-1)|| < Ellwn — wns
ss(l 1) A(C(2n), Cna)

1
< a0 (143 ) o =zl
n (3.14)
By the 7-Lipschitz continuity of k and Ap-Lipschitz continuity of D, we have

1&(yn) = k(yn-)Il < 1llyn — Yn—1l

< (14 1) HD@). Do)

H
<nip < ) |Zn — Zn—1- (3.15)
Since E is A e-Lipschitz continuous, we have

Ion = ncal < (14 1) A(E(wn), B(zn_1)

S)\E(

From (3.10)-(3.16), we deduce that

SI*—'

! (3.16)

Tn+1 — Tn

1 2
< [2\/1—20+52+p6'y)\,4 <1+%) +\/1—2pa+p2,@2)\28 (1+5)

1 1 1
+ p€Ac (1 + —) + pnAp (1 + —) + pAg (1 + —) ] |lzn = Zn-1|
n n n

= (kn +tn(@)Tn — Tn_1]l
= On||zr, — zn-1], (3.17)

where

1
kn =2v1—-20+ 6%+ pAg (1+E)1

Z
1 1
tu(p) = \/1 —2pa+ p2 3203 (1 + ﬁ) + plevAa + EXc +1)p) (1 + 7_z>

and
On = kn + ta(p).

k=2v1-20+8+ plg,

8(p) = /1 — 200 + p22D% + plevAa + EXc + TAD)

Let
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and

0=k+t(p).
Then we obtain that k,, — k, t,(p) — t(p) and 6,, — 0 as n — co. The condition
(3.9) implies 0 < 6 < 1 and hence 6, < 1 for sufficiently large n. It follows from
(3.17) that {z,} is a Cauchy sequence in H. Let 7, — = € H as n — co. By

(3.7) and the Lipschitz continuities of A, B, C, D and E,

o

s = ] < (1 +

< (1+ - 1) Mallnis — 2ol

1
R (1 ;

1 L -
lnps — wal < (1 + 2 1) H(Cansn), Clan))
1

< (1 + - 1) Ac||znsr — znll,

H(E(@n+1), E(zn))

< (1 + m) )\E“$n+1 — an

It follows that {un}, {vn}, {wn}, {yn} and {z,} are also Cauchy sequences in
H. Wecanassumethatunﬁu,vnﬁv , Wy — WY, yp — ¥* and z, — 2%,
respectively. Note that for u, € A(z,) we have

(A < "~ + A (Ale), Ale))

< lu* —upl| 4+ Al — 2% -0 as n — 0.

Hence we must have u* ¢ A(x ). Similarly, we can show that v* € B(z*),
w* € C(z*), y* € D(z *) and z* € E(z*). Hence we have that

Ag=(u7) 2 a(z"), Bo- (v*) 2 b(2*), Cpn (w*) > ¢(2*), Dor (y*) > d(2*)
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and Eg-(z*) > e(z*). By Algorithm 3.1, we see that

Tnt1 = T = g(on) + J2C [ g(2n) = p(M(F(un)) = N (v, wn)

+k(yn))], Vn=0,1,2,--. (3.18)

By the Lipschitz continuities of A, B,C, D, E, f, g,k and M, letting n — oo in

(3.

18), we obtain

g(a®) = J20 [g(@") = (M (F(u")) = N(v*,w) + k(y)]-

By Theorem 3.1, (z*, u*, v*, w*, y*, 2*) is a solution of the problem (2.1). This
completes the proof.

Remark 3.2. Theorem 3.2 unifies and generalized many corresponding known
results in recent literature [4,6,13-16].
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