• Title/Summary/Keyword: quasi-periodic

Search Result 142, Processing Time 0.027 seconds

Multi-scale Simulation of Powder Compaction Process and Optimization of Process Parameters (분말가압 성형공정의 멀티스케일 시뮬레이션과 공정변수 최적화)

  • Shim, J.W.;Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.344-347
    • /
    • 2007
  • For modeling the non-periodic and randomly scattered powder particles, the quasi-random multi-particle array is introduced. The multi-scale process simulation, which enables to formulate a regression model with a response surface method, is performed by employing a homogenization method. The size of ${Al_2}{O_3}$ particle, amplitude of cyclic compaction pressure, and friction coefficient are considered as optimal process parameters. The optimal conditions of process parameters providing the highest relative density are finally found by using the grid search method.

  • PDF

Radio Variability and Random Walk Noise Properties of Four blazars

  • Park, Jong-Ho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2014
  • We present the results of a time series analysis of the long-term radio lightcurves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program which provides densely sampled lightcurves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5,GHz. Our sources show mostly flat or inverted (spectral indices -0.5 < alpha < 0) spectra, in agreement with optically thick emission. All lightcurves show strong variability on all time scales. Analyzing the time lags between the lightcurves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accord with the classification of Valtaoja et al. (1992). The periodograms (temporal power spectra) of the observed lightcurves are consistent with random-walk powerlaw noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars.

  • PDF

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender;Park, Si-Hyun
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.544-550
    • /
    • 2017
  • This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.

The Analysis of SAW Filter Characteristics Using Ouasi-Static Approximation (Ouasi-Static 근사화에 의한 탄성표면과 필터의 특성 해석)

  • 이동도;정영지;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.481-489
    • /
    • 1993
  • The charge distribution is calculated to analyze the quasi-static impedance of periodic interdigital transducer taking into account the effect of infinite neighboring electrodes. The charge distribution can be represented by the element factor and array factor. The radiation conductance, susceptance and static capacitance of the input and output IDT's with arbitrary voltages are obtained by the charge distribution. The impedance of apodized IDT, is analyzed by multi-track model in which IDT is represented by the parallel connection of the uniform tracks. The calculated input and output impedances are in good agreement with the experimental results.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

High-frequency Back-scattering Cross Section Analysis of Rotating Targets (회전 표적의 고주파수 후방산란단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.16-24
    • /
    • 2007
  • The high-frequency analysis method of back-scattering cross section spectrum of rotating targets is established. The time history of the back-scattering cross section is calculated using a quasi-stationary approach, based on a physical optics and a physical theory of diffraction, combining an adaptive triangular beam method to consider the shadow effect. And the spectra of back-scattering cross section by the Doppler effect are analyzed applying a simple fast Fourier transform method to its time history. The numerical calculation for rotating targets, such as rotating metal plates and underwater propeller, are carried out. The time history appears to be periodic with respect to the number of wings. The backscattering cross section spectrum level and its frequency shift are dependent on the rotating speed, direction, and the shape of the targets.

Fractal basin boundary of quasi-periodic motions of a circular plate (원판의 준주기운동의 프랙털 흡인경계)

  • Park, Hae-Dong;Lee, Won-Kyoun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.696-701
    • /
    • 2005
  • 조화가진력이 작용하는 고정경계를 가진 완전원판의 비선형 진동에 대한 응답특성을 연구하였다. 원판의 비대칭모드의 고유진동수 근처에 가진주파수가 작용하는 주공진에서의 응답은 정상파(standing wave)뿐만 아니라 진행파(traveling wave)가 존재 한다고 알려져 있다. 주공진 근처의 정상상태 응답곡선에서 최대한 5개의 안정한 응답이 존재하는 것으로 밝혀졌으며, 이들은 1개의 정상파와 4개의 진행파로 나타난다. 이 진행파 중 2개는 가진진동수가 변화함에 따라 Hope분기에 의해 안정성을 잃은 후 주기배가운동을 거쳐 흔돈운동에 이르게 된다. 초기조건에 의해 각각의 끌개(attractor)에 흡인되는 흡인영역의 경계를 주평면의 개념을 통하여 구하였으며, 가진진동수가 변화함에 따라 안정한 해가 혼돈운동에 이르는 과정에 대해 흡인영역의 경계가 변화되는 특성을 관찰하였으며, 흡인영역 경계에 대한 프랙털 차원(fractal dimension)을 계산하였다.

  • PDF

Quasi-Periodic Oscillations of Off-Limb Flaring Arcade Loops observed in the SDO/HMI Continuum

  • Cho, Il-Hyun;Nakariakov, Valery;Moon, Yong-Jae;Lee, Jin-Yi;Kashapova, Larisa;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2021
  • In this study, we report oscillations of the total intensity of white light loops in the off-limb solar flare observed in 2017-Sep-10 with the SDO/HMI. The total intensity oscillations are correlated with the area of the flaring loop in the plane of the sky. The oscillatory pattern is well fitted by two consecutive damped oscillations. The period and damping time of the first oscillation are 12.9 minutes and 9.9 minutes, respectively. Those of the second oscillation are 11.7 minutes and 15.4 minutes. The excitation of the oscillations coincides with two consecutive type III radio bursts observed in meter range. Assuming the oscillations are magnetoacoustic waves in the flaring loops with the loop lengths ranging from 30 to 90 Mm, the temperature of the white light emitting loops could be in the range from 0.3 MK to 2.6 MK.

  • PDF

Quantitative Evaluation of Energy Coupling between Quasi-Periodic Substorms and High-Speed Coronal Streams (준 주기적인 서브스톰과 고속 태양풍 사이의 에너지 결합에 대한 정량적 평가)

  • Park, M.Y.;Lee, D.Y.;Kim, K.C.;Choi, C.R.;Park, K.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • It has been known that high-speed solar wind streams associated with coronal holes lead to quasi-periodic substorms that occur approximately every $2{\sim}4$ hours. In this paper we examined 222 repetitive substorms that occurred during high-speed stream periods in July through December in 2003 to quantitatively determine a range of energy input from the solar wind into the magnetosphere between two consecutive substorms. For this study, we have used the Akasofu ${\varepsilon}$-parameter to time-integrate it for the interval between two consecutive substorms, and have applied this method to the 222 substorms. We find that the average amount of solar wind input energy between two adjacent substorms is $1.28{\times}10^{14}J$ and about 85% out of the 222 substorms occur after an energy input of $2{\times}10^{13}{\sim}2.3{\times}10^{14}J$. Based on these results, we suggest that it is not practical to predict when a sub storm will occur after a previous one occurs purely based on the solar wind-magnetosphere energy coupling. We provide discussion on several possible factors that may affect determining substorm onset times during high-speed streams.