DOI QR코드

DOI QR Code

Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender (Department of Electronics Engineering, Yeungnam University) ;
  • Park, Si-Hyun (Department of Electronics Engineering, Yeungnam University)
  • Received : 2017.01.24
  • Accepted : 2017.07.13
  • Published : 2017.10.25

Abstract

This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.

Keywords

References

  1. K. Thyagarajan and A. Ghatak, Lasers: Fundamentals and Applications, 2nd Edition, by springer (2010).
  2. J. Vasseur, Properties and Applications of Transistors, 1st Edition, by Elsevier (2013).
  3. S. Iezekiel and M. Hammar, "Transistor lasers and their expected applications in microwave photonics," Proc. ICTON, Mo.C5.5 (2015).
  4. https://www.ece.illinois.edu/newsroom/article/10807.
  5. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  6. Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618-621 (2008). https://doi.org/10.1038/nphoton.2008.157
  7. C. W. I. Chan, "Towards room-temperature terahertz quantum cascade lasers: directions and design," Ph. D. Thesis, MIT February (2015).
  8. M. Dyakonov and M. Shur, "Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current," Phys. Rev. Lett. 71, 2465-2468 (1993). https://doi.org/10.1103/PhysRevLett.71.2465
  9. B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photonics, 1, 517-525 (2007). https://doi.org/10.1038/nphoton.2007.166
  10. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, "Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors," Appl. Phys. Lett. 84, 2331-2333 (2004). https://doi.org/10.1063/1.1689401
  11. T. Otsuji, Y. M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano and V. V. Popov, "Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems," J. Phys.: Condens. Matter 20, 384206 (2008). https://doi.org/10.1088/0953-8984/20/38/384206
  12. S. Vainshtein, J. Kostamovaara, V. Yuferev, W. Knap, A. Fatimy, and N. Diakonova, "Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor," Appl. Phys. Lett. 99, 176601 (2007). https://doi.org/10.1103/PhysRevLett.99.176601
  13. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, "Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power," Appl. Phys. Lett. 89, 253511 (2006). https://doi.org/10.1063/1.2410215
  14. W. Stillman, F. Guarin, V. Y. Kachorovskii, N. Pala, S. Rumyantsev, M. S. Shur, and D. Veksler, "Nanometer scale complementary silicon MOSFETs as detectors of terahertz and sub-terahertz radiation," Proc. IEEE Sensors, 934-937 (2007).
  15. E. Gornik and D. C. Tsui, "Far infrared emission from hot electrons in Si inversion layers," Solid State Electron. 21, 139-142 (1978). https://doi.org/10.1016/0038-1101(78)90127-2
  16. D. C. Tsui, E. Gornik, and R. A. Logan, "Far infrared emission from plasma oscillation of Si inversion layers," Solid State Commun. 35, 875-877 (1980). https://doi.org/10.1016/0038-1098(80)91043-1
  17. Y. Deng and M. S. Shur, "Electron mobility and terahertz detection using silicon MOSFETs," Solid State Electron. 47, 1559-1563 (2003). https://doi.org/10.1016/S0038-1101(03)00074-1
  18. S. L. Rumyantsev, K. Fobelets, D. Veksler, T. Hackbarth and M. S. Shur, "Strained-Si modulation doped field effect transistors as detectors of terahertz and sub-terahertz radiation," Semicond. Sci. Technol. 23, 105001 (2008). https://doi.org/10.1088/0268-1242/23/10/105001
  19. Y. M. Meziani, E. Garcia-Garcia, J. E. Velazquez-Perez, D. Coquillat, N. Dyakonova, W. Knap, I. Grigelionis, and K. Fobelets, "Terahertz imaging using strained-Si MODFETs as sensors," Solid State Electron. 83, 113-117 (2013). https://doi.org/10.1016/j.sse.2013.01.030
  20. J. Y. Park, S. H. Kim, and K. R. Kim, "Extended design window of resonant plasma-wave transistor for terahertz emitter by considering degenerate carrier velocity model with Fermi-Dirac distribution," Jpn. J. Appl. Phys. 54, 06FG08 (2015). https://doi.org/10.7567/JJAP.54.06FG08
  21. M. Kumar, S. Kumar, E. Goel, K. Singh, B. Singh, and S. Jit, "Strain-induced plasma radiation in Terahertz domain in Strained-Si-on-Insulator MOSFETs," IEEE Trans. Plasma Sci. 44, 245-249 (2016). https://doi.org/10.1109/TPS.2016.2516588
  22. M. Dyakonov, "Generation and detection of Terahertz radiation by field effect transistors," C. R. Phys. 11, 413-420 (2010). https://doi.org/10.1016/j.crhy.2010.05.003
  23. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, "Emission and detection of Terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene," IEEE Trans. THz Sci. Technol. 3, 63-74 (2013). https://doi.org/10.1109/TTHZ.2012.2235911
  24. S. J. Orfanidis, Electromagnetic Waves and Antennas, (Rutgers University: Piscataway, NJ, 2008).
  25. K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker, Y. Zhang, M. Steen, and M. Ieong, "Fabrication and mobility characteristics of ultrathin strained Si directly on insulator (SSDOI) MOSFETs," in IEDM Tech. Dig., 3.1.1-3.1.4 (2003).
  26. J. Wang, and M. Lundstrom, "Ballistic transport in high electron mobility transistors," IEEE Trans. Electron Devices 50, 1604-1609 (2003). https://doi.org/10.1109/TED.2003.814980
  27. S. S. Chung, Y. J. Tsai, C. H. Tsai, P. W. Liu, Y. H. Lin, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, "Technology roadmaps on the ballistic transport in strain engineered nanoscale CMOS devices," in 2007 IEEE conf. proceeding on Electron Devices and Solid-State Circuits, 23-25 (2003).