• Title/Summary/Keyword: quasi-likelihood estimator

Search Result 12, Processing Time 0.021 seconds

Optimal Design for Locally Weighted Quasi-Likelihood Response Curve Estimator

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.743-752
    • /
    • 2002
  • The estimation of the response curve is the important problem in the quantal bioassay. When we estimate the response curve, we determine the design points in advance of the experiment. Then naturally we have a question of which design would be optimal. As a response curve estimator, locally weighted quasi-likelihood estimator has several more appealing features than the traditional nonparametric estimators. The optimal design density for the locally weighted quasi-likelihood estimator is derived and its ability both in theoretical and in empirical point of view are investigated.

Efficient Quasi-likelihood Estimation for Nonlinear Time Series Models and Its Application

  • Kim, Sahmyeong;Cha, Kyungyup;Lee, Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.101-113
    • /
    • 2003
  • Quasi likelihood estimators defined by Wedderburn are derived for several nonlinear time series models. And also, the least squared estimator and Quasi-likelihood estimator are compared in sense of asymptotic relative efficiency at those models. Finally, we apply these estimations to a real data on exchanging rate and stock market prices.

Local Influence of the Quasi-likelihood Estimators in Generalized Linear Models

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.229-239
    • /
    • 2007
  • We present a diagnostic method for the quasi-likelihood estimators in generalized linear models. Since these estimators can be usually obtained by iteratively reweighted least squares which are well known to be very sensitive to unusual data, a diagnostic step is indispensable to analysis of data. We extend the local influence approach based on the maximum likelihood function to that on the quasi-likelihood function. Under several perturbation schemes local influence diagnostics are derived. An illustrative example is given and we compare the results provided by local influence and deletion.

Sparse Design Problem in Local Linear Quasi-likelihood Estimator (국소선형 준가능도 추정량의 자료 희박성 문제 해결방안)

  • Park, Dong-Ryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.133-145
    • /
    • 2007
  • Local linear estimator has a number of advantages over the traditional kernel estimators. The better performance near boundaries is one of them. However, local linear estimator can produce erratic result in sparse regions in the realization of the design and to solve this problem much research has been done. Local linear quasi-likelihood estimator has many common properties with local linear estimator, and it turns out that sparse design can also lead local linear quasi-likelihood estimator to erratic behavior in practice. Several methods to solve this problem are proposed and their finite sample properties are compared by the simulation study.

Extended Quasi-likelihood Estimation in Overdispersed Models

  • Kim, Choong-Rak;Lee, Kee-Won;Chung, Youn-Shik;Park, Kook-Lyeol
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.187-200
    • /
    • 1992
  • Samples are often found to be too heterogeneous to be explained by a one-parameter family of models in the sense that the implicit mean-variance relationship in such a family is violated by the data. This phenomenon is often called over-dispersion. The most frequently used method in dealing with over-dispersion is to mix a one-parameter family creating a two parameter marginal mixture family for the data. In this paper, we investigate performance of estimators such as maximum likelihood estimator, method of moment estimator, and maximum quasi-likelihood estimator in negative binomial and beta-binomial distribution. Simulations are done for various mean parameter and dispersion parameter in both distributions, and we conclude that the moment estimators are very superior in the sense of bias and asymptotic relative efficiency.

  • PDF

On Bahadur Efficiency and Bartlett Adjustability of Quasi-LRT Statistics

  • Lee, Kwan-Jeh
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.251-264
    • /
    • 1998
  • When the LRT is not feasible, we define quasi-LRT(QLRT) as a modification of the LRT Under some appropriate conditions the QLRT shares Bahadur optimality and Bartlett Adjustability with the LRT. When we can find maximum likelihood estimator under the null parameter space but not under the unrestricted parameter space, our QLRT is Bahadur optimal as is the LRT We suggest the stopping rule of the Newton-Raphson iterations for constructing the QLRT statistics which are Bartlett adjustable.

  • PDF

Asymmetric robust quasi-likelihood

  • Lee, Yoon-Dong;Choi, Hye-Mi
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.109-112
    • /
    • 2005
  • The robust quasi-likelihood (RQL) proposed by Cantoni & Ronchetti (2001) is a robust version of quasi-likelihood. They adopted Huber function to increase the resistance of the RQL estimator to the outliers. They considered the Huber function only of symmetric type. We extend the class of Huber function to include asymmetric types, and derived a method to find the optimal asymmetric one.

  • PDF

Estimation of nonlinear censored simultaneous equations models : An Application of Quasi Maximum Likelihood Methods (절삭된 연립방정식 모형의 추정에 대한 몬테칼로 비교)

  • 이회경
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.1
    • /
    • pp.13-24
    • /
    • 1991
  • This paper presents a Monte Carlo evaluation of estimators for nonlinear consored simultaneous equations models. We examine the performance of the maximum likelihood estimator (MLE), the two-step quasi maximum likelihood estimator (2QMLE) proposed by Lee and Hurd (1989), and another quasi MLe using least squares at the first step (LSAE) under varying degrees of freedom and underlying distributions, Although QMLE's are not necessarily consistent, the Monte Carlo results show that the 2QMLE may be used as an alternative to MLE when MLE is not applicable in practice.

  • PDF

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

Improvement of Suspended Solid Loads Estimation in Nakdong River Using Minimum Variance Unbiased Estimator (비편향 회귀분석모형을 이용한 낙동강 본류 부유사량 산정방법의 신뢰도 향상)

  • Han, Suhee;Kang, Du Kee;Shin, Hyun Suk;Yu, Jae-Jeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.251-259
    • /
    • 2007
  • In this study three log-transformed linear regression models are compared with the focus of bias correction problem. The models are the traditional simple linear regression estimator (SL), the quasi maximum likelihood estimator (QMLE) and the minimum variance unbiased estimator (MVUE). Using such models, suspended solid loads can be estimated using the discharge - suspended solid data set that has been measured by NIER Nakdong River Water Environment Laboratory. As a result, SL shows negative bias for most values of the measured discharge range. QMLE is nearly unbiased for moderate values of the measured discharge range, but shows increasingly positive bias for either large or small value of the measured discharge range. MVUE is unbiased. It is also analyzed how the estimated regression coefficient and exponent are distributed along Nakdong river main stream.