• 제목/요약/키워드: quasi H-closed spaces

검색결과 6건 처리시간 0.021초

F-CLOSED SPACES

  • Chae, Gyuihn;Lee, Dowon
    • Kyungpook Mathematical Journal
    • /
    • 제27권2호
    • /
    • pp.127-134
    • /
    • 1987
  • The purpose of this paper is to introduce a topological space named an F-closed space. This space is properly contained between an S-closed space [17] and a quasi H-closed space [14], and between a nearly compact space [15] and a quasi H-closed space. We will investigate properties of F-closed spaces, and improve some results in [2], [7] and [17].

  • PDF

A NOTE ON S-CLOSED SPACES

  • Woo, Moo-Ha;Kwon, Taikyun;Sakong, Jungsook
    • 대한수학회보
    • /
    • 제20권2호
    • /
    • pp.95-97
    • /
    • 1983
  • In this paper, we show a necessary and sufficient condition for QHC spaces to be S-closed. T. Thomson introduced S-closed spaces in [2]. A topological space X is said to be S-closed if every semi-open cover of X admits a finite subfamily such that the closures of whose members cover the space, where a set A is semi-open if and only if there exists an open set U such that U.contnd.A.contnd.Cl U. A topological space X is quasi-H-closed (denote QHC) if every open cover has a finite subfamily whose closures cover the space. If a topological space X is Hausdorff and QHC, then X is H-closed. It is obvious that every S-closed space is QHC but the converse is not true [2]. In [1], Cameron proved that an extremally disconnected QHC space is S-closed. But S-closed spaces are not necessarily extremally disconnected. Therefore we want to find a necessary and sufficient condition for QHC spaces to be S-closed. A topological space X is said to be semi-locally S-closed if each point of X has a S-closed open neighborhood. Of course, a locally S-closed space is semi-locally S-closed.

  • PDF

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.