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F-CLOSED SPACES
By Gyuihn Chae* and Dowon Lee*

Abstract: The purpose of this paper is to introduce a topological space named
an F-closed space. This space is properly contained between an S-closed space
[17) and a quasi H-closed space [14], and between a nearly compact space [15]
and a quasi H-closed space. We will investigate properties of F-closed spaces,
and improve some results in (2], [7] and [17].

1. Introduction.

Throughout this paper, spaces mean topological spaces on which no separation
axioms are assumed. Let A be a subset of a space X. By T(X), cly(4) and
inty(4) (T, cl(A) and int(A) without confusions) we will denote, respectively,
the topology on X, the closure of A and the interior of A in X. A subset A
of a space X is said to be semiopen [N. Levine] if for some UST(X), UCA
—cl(U). By SO(X) and scl(4) we will denote. respectively, the family of all
semiopen sets and the semiclosure of 4 in X.

S.N. Maheshwari defined a subset ACX to be fecbly open [10] if for an
0=T(X), OcAcscl(0). The complement of a feebly open set is said to be
feebly closed. The feeble closure of a set A (fcl(4)) and the feeble interior
of A (fint(4)) in a space were known to be defined in manner analoguous to
the standard concepts as well as the case of the closure and interior in a space.
O. Njastad defined a set of a space X to be a-set [11] if ACint(cl(int(4)).
It was shown in [4, Theorem 2.1.] that in every space, feebly open sets are
the same sets as a-sets. We will denote by [FO(X) the family of all feebly
open sets in a space X.

A subset A is said to be regular open (resp. feebly regular open [4] and
regular semiopen [2]) if A=int(cl(4)) (resp. A=fint(fcl(4)) and if for
some regular open set U, Uccl(U)A4). By RO(X), FRO(X) and RSO(X) we
will denote, respectively, the families of all regular open sets, all feebly
regular open sets and all regular semiopen scts of a space X.

In [14], authors defined a space X to be quasi H-closed (QHC) if every open
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cover of X has a finite proximate subcover. Similarly, T. Thompson defined
a space X to be S-closed (SC) [17] if every semiopen cover of X has a finite
proximate subcover. A space X is said to be nearly compact (NC) [16] if every
regular open cover of X has a finite subcover. A space X is almost regular
[15] if and only if, for each x=X and V&=RO(X) containing x, there exists a
U=RO(X) such that x=Uccl(U)V. A space X is said to be extremally
disconnected (e.d.) if for each O=T(X), cl(O)=T(X).

2. Characterization

DEFINITION 2.1. A space X is said to be F-closed (FC) if every feebly open
cover of X has a finite proximate subcover.

THEOREM 2.1. A space X is FC if and only if cvery of X by feebly regular
open sels has a finite proximale subcover.

PROOF. One part follows from the fact that if A=fint(fcl(4)), then Ae
FO(X). Conversely, assume X is not FC. Then there exists a cover of X,
7 =V,|V;=FO(X), 2D} which has no finite proximate subcover. However, *
(fint(fel(V;))|A=D} is a feebly regular open cover no finite proximate
subcover because V,Cfint(fcl(V;))cl(V;) for each 2Z&D. This contradicts.

[t was shown in [4, Theorem 3.10] that RO(X)CFRO(X)CRSO(X). There-
fore, by [2, Theorem 1], [12, Theorem 1.3] and the above theorem, we obtain
that FC spaces are properly contained between SC spaces and QHC spaces.

In order to make easy the treatment of FC spaces, we define the following.

DEFINITION 2.2. A subset A of a space X is said to be F-closed if it is FC
as the subspace of X. A subset A of a space (X,T) is said to be F-closed
relative to X if each family FO(X) which covers A has a finite subfamily
whose union is T-dense in A.

Every set FC relative to a space X may not, in general, be an FC subspace
of X as shown by the next examples.

EXAMPLE 2.1. Let X=[0, 1] be the subspace of the reals and J ={—}z—]ne
VA } Then J is FC relative to X, but not an FC space even though it is feebly
closed in X.

EXAMPLE 2.2. Let R be the cocountable space of the reals and J the set in
example 2.1. Then J is FC relative to R, but not an FC subspace, though it
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is closed in R.

LEMMA 2.1. Lex X be a space. If A=FO(X) and BEFO(X), then ANB&
FO(4). [4, Corollary 2.2.]

THEOREM 2.2. Let X be a space and HEFO(X). Then H is FC iff il is
FC relative to X.

PROOF. Let "= {V,|V,&FO(X), A&D] be a cover of an FC space H. Then,
by Lemma 2.1, {HV;|A&D} is a feebly open cover of H because HEFO(X).
Since H is FC, we have a finite subfamily 77, of %~ whose union is dense in
H with the relative topology. Conversely, let "= {V,|V,&FO(H), A=D) be a
cover of H. Then, by Theorem 2.6 in [4], each V;=FO(X) because HEFO(X).
Since H is FC relative to X, there exists a finite subfamily #°, of % such
that H=U}_,cl(V;). Therefore, we have H=7_;cly(V;).

COROLLARY 2.1. Let X be a space, A=FO(X) and BCX. If A and B are
FC relative to X, then cl(A) and int(cl(B)) are FC subspace of X.

3. Filterbase characterizations of FC spaces.

DEFINITION 3.1. A filterbase &= (B;} on a space X is said to f-converge
(resp. f-accumulate) to a point p=X if for each VeFO(X) containing p (resp.
and each B,&%), there exists a B;&4% such that B,Ccl(¥) (resp. B,(cl(V)
#¢) [4l.

THEOREM 3.1. For a space X, the followings are equivalent.

(@) X is FC

(b) Every ultra filterbase & = {B;] f-converges

(¢) Every filterbase # = (B;} f-accumulates to a point p in X.

(d) For each family of feebly closed sets (F;} such that [|;F,=¢, there exists
a finite subfamily (B;;|i=1,2,--, 0} such that N;_, int(F;)=¢.

PROOF. (a)=—>(b): Let &= {B;} be an ultra filterbase on an FC space X.
Assume that & does not f-converge to any point. Then for each p=X, there
exists a V(p)EFO(X) containing p and a B,=% such that B,[1clV(p))=4¢. Since
V(| V(peFOX), p=X] is a cover of X, there exists a finite subfamily
V(P 1i=1,2,-,n} such that X=U7_,cl(V;;(p)). Since & is a filterbase,
there exists a nonempty By&=% such that By—;_{B;;(#). Thus By[\cl(V;;(p)
=¢, for each i=1, -, m. Thus ByN [U7_;cl(V;(p))]1=ByNX=¢. This contra-
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dicts, for By =¢.

(b)—>(c)—>(d) were shown in [5, Theorem 2.7 and 2.9.].

(d=—=(@): Let {V,|V,=FO(X), A<D} be a cover of a space X. Then
N(X-V;)=¢. Since cach X—V; is feebly closed, by (d) there exists a finite
snbfamily [V i=1,2,--,n) such that(}_;int(X—V;)=N/_;(X—cl¥V;))=4.
Hence X is FC.

The following theorem shows that FC spaces are properly contained between
NC space and QHC spaces.

THEOREM 3.2. Every NC space is FC.

PROOF. Let 7= {V,|V,&FO(X), 2=D} be a cover of an NC space X. Then
X=Uint(cl(int(V;))) because int(V,)CV,;Cint(cl(int(V))) for each /=D.
Since X is NC and int(V )T (X), we have a finite subfamily [int(V ;)]
4;=D,=D) such that X=U7_; int(cl(nt(¥V;))). Thus X=U}_, cl(V;,). Hence
there exists a finite subfamily #7,= (V,;|Ai€D,=D) of % such that X=1U]_;
cl(V;;). Thus X is FC.

COROLLARY 3.1. Every almost regular QHC space is FC.

PROOF. It is known that an almost regular space is QHC if and only if it 1s
NC [16, Theorem 2.3].

It is known that compact spaces are NC. Thus, by Theorem 3.4, we obtain
that compact spaces are FC. However, there exists an FC space which is not
compact, as well as locally compact, as following examples show.

EXAMPLE 3.1. Let N be the set of natural numbers. For ecach k=N, let
Y& = lk+o-#=23,-] and V(O B=0]U UL, Let X=U; Y
/N[ 0} with the topology generated by the usual subspace topology of the
reals on U2, ¥ (&) UN, and the set {V (0, #)|k&N}. Then X is not compact
because the infinte set N has no limit points. However, by Theorem 3.4, X is
FC,

EXAMPLE 3.2. The one-point compactification QU {ec} of Q in the reals R is
FC, but not locally compact because Q is open in QL (oo},

In Example 3.4, there exists an FC space which is not NC. However, we
have the followings.

THEOREM 3.3. Every e.d. FC space is NC.
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PROOF. It is easy to prove because for each A=D, V;&RO(X)CFO(X) and
(V) =int (V) =V;.

THEOREM 3.4. Every almost regular FC space is NC.

PROOF. It is easy to prove and is thus omitted.

COROLLARY 3.2. Every almost regular SC space is e.d. and NC [7].
THEOREM 3.5. Let X be an e.d. space. Then X is FC iff it is SC.
PROOF. In an e.d. space X, FO(X)=80(X) [4, Theorem 2.4].
From [2], [7], [17] and the aboves, we have the followings.

COROLLARY 3.3.
(@) In an e.d. space, the following properties are equivalent:

(1) SC (@ FC 3 NC | (4 QHC
() In a regular space, the following properties are equivalent:
) FC (2) NC 3) QHC (4) Compact

EXAMPLE 3.3. BN is FC since it is SC [17, Corollary p.337]. 8Q is FC
because it is compact Hausdorff, but not SC. AN-N is FC because it is closed
in SN and hence SN-N is compact. However, SN-N is not SC [17].

EXAMPLE 3.4. Let X be the closed interval [0,3] with the topology generated
by the subspace topology along with the set {1}. Then X is not NC. However,
X is FC because every feebly open cover of X has a finite proximate subcover
and it is dense in X.

EXAMPLE 3.5. There exists a T, FC space which is not e.d., see [2, Example
3, p.585).
4. Feebly continuous and feebly irresolute images, and the product of FC

spaces.

We will denote by g: X—Y a function of a space X into a space Y. The
following lemmas were shown in [3,] [4] and [5].

DEFINITION 4.1. A function g: X-Y is feebly continuous C(resp. feebly
irresolute [5]) [4] if for each VT (X) (resp. VeFOX)), gﬁl(V)EFO(X).

LEMMA 4.1. A function g: X—Y s feebly continuous (resp. feebly irresolute)
iff for each A—X, g(fecl(A)cl(g(A)) (resp. g(fel(A)fecl(g(A)).



132 Gyulhn Chae and DoWon Lee

THEOREM 4. 1. Let a function g: X—=Y is feebly continuous and onto. Then if
X is FC, then Y is QHC.

PROOF. Let #"={V;|V,&€T({¥), 2D} be a cover of Y. Then (g~
(V) |A=D) is a feebly open cover of X. Since X is FC, we have a finite sub-
family 27, of 7" such that X=U"_,cl(g"'(V3)). Since U’_,;g~'(¥V3) is dense
in X, by Lemma 4.1 Y=g(X)=g[fcl(U’_,g ;) cellg(Ur_, (g™ (V300]
=cl(U?=, V)= Uiz el (V3.

COROLLARY 4.1. The continuous surjection of an FC space is QHC.

COROLLARY 4.2. The feebly continwous surjection of an FC space onto a
regular space is compact.

THEOREM 4.2. Let g: X—Y be feebly irresolute and onto. Then if X is FC,
then Y is FC.

PROOF. The proof is almost similar to Theorem 4.1, using Lemma 4. 1.

THEOREM 4.3. Let X be FC. Then the continuous open image of X is FC.

PROOF. Let # = {V;|V;=FO(Y), A=D) be a cover of g(X), where g: X—Y
is a continuous open function. Then %= {gﬁl(V;_) |A=D) is a cover of X. For
each 1D, g"l(V;_)EFO(X) because g is continuous and open [5, Theorem
2.6]. Hence # is a feebly open cover of an FC space X. Thus we have a finite
subfamily {g~'(V;)|(Ai€Dy=D) such that X=U"_,cl(g" (V;)). By the con-
tinuity of g, we have a finite subfamily %7, of %" such that g(X)— U cl
(V3. Thus g(X) is FC relative to ¥. By Theorem 2.2, the proof completes.

LEMMA 4.2. Let g: X—Y be a function of an e.d. space X fo a Hausdorff
space Y.

PROOF. The proof follows from the fact if every filterbase on X f-accumu-
lates to a point, then the feebly irresolute image of g is closed [4, Theorem
4.8 and Remark 4.1].

THEOREM 4.4. The feebly irresolute image of any FC Hausdorff space X
into any Hausdorff space Y is closed.

PROOF. Since, by Theorem 3.3, any FC Hausdorff space is e.d., we can
casily show that g(X)=cl[g(X)], utilizing Lemma 4.2 and Hausdorff property
of ¥, where g: XY is feebly irresolute.
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THEOREM 4.5. Lel (X;|A=D) be a family of spaces. If the product space
X=_ erX,-, is FC, then each X, is FC.
ri= ; )
PROOF. The natural projection is a continuous open surjection. Thus the
natural projection is feebly irresolute [5, Theorem 2.5]. Therefore, each X, is
FC, by Theorem 4.3.

The converse to Theorem 4.5 may not be true, in general, as the next
example shows.

EXAMPLE 4.1. AN is FC, but SN X/AN is not e.d. even though it is Hausdorff.
Therefore, SNXAN is not FC, by Theorem 3. 3.

REFERENCES

[1] N. Bourbaki, General Topology, Part |, Addition-Wesly, Reading, Mass., 1966.

(2] D.E. Cameron, Properties of S-closed spaces, Proc. AMS, 72(1978), 581—586.

[3] G.I. Chae and D.W. Lee, Feebly open sels and feeble continuity in topological spaces,
U.L T. Report, 16(1984), 367—371.

[4] ————, Feebly closed sels and feeble continuity in topological spaces, Jr. Korean
Math. Soc., (To appear)

[5)) ————— and H.W. Lee, Feebly irresolute functions, SungShin Women's Univ.
Report, 21(1985), 273—280.

[6] L. Gillman and M. Jerison, Rings of Continuous Functions, Princeton, 1960.

[7] R.A. Herrman, RC-convergence, Proc. Amer. Math. Soc., 75(1979), 311—317.

[8] J.E. Joseph, Characterizations of nearly compact spaces, Boll. U.M.IL., 13(1976),
311—-321.

[8] S.N. Maheshwari and S.S. Thakur, a-irresolute mappings, Tamkang Jr. Math.,
11(1980), 209—214.

[10] =———— and U.D. Tapi, Note on some applications of feebly open sets, M.B. ]Jr.
Univ. of Saugar, (1978—1979), To appear.

[11] O. Njasted, On some classes of nearly open sets, Pacific Jr. Math., 15(1965), 961
—=970.

[12] T. Noiri, On S-closed spaces, Ann. de Soc. Sci. de Bruxelles, 91(1977), 189—194.

[13) —————, Remarks on locally nearly compact spaces, Boll. U.M.IL, 10(1974), 36
—43.

[14] ]. Porter, and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer.
Math. Soc., 138(1969), 159—170.

[15] M.K. Singal and S.P. Arva, On almost-regular spaces, Glasnik Mat., 4(1969), 89



134 Gyulhn Chae and DoWon Lee

—99.

[16] ————— and A. Mathur, On nearly compact spaces, Boll. U.M.L., 2(1969), 702—
710.

[17] T. Thompson S-closed spaces, Proc. Amer. Math. Soc., 60(1976), 335—338.

University of Ulsan
Ulsan, KyungNam, Korea



