• 제목/요약/키워드: quasi­variational inequalities

검색결과 26건 처리시간 0.017초

AN EXTENSION OF MULTI-VALUED QUASI-GENERALIZED SYSTEM

  • Kum, Sangho;Kim, Won Kyu
    • 충청수학회지
    • /
    • 제25권4호
    • /
    • pp.703-709
    • /
    • 2012
  • Recently, Kazmi and Khan [7] introduced a kind of equilibrium problem called generalized system (GS) with a single-valued bi-operator F. Next, in [10], the first author considered a generalization of (GS) into a multi-valued circumstance called the multi-valued quasi-generalized system (in short, MQGS). In the current work, we provide an extension of (MQGS) into a system of (MQGS) in general settings. This system is called the generalized multi-valued quasi-generalized system (in short, GMQGS). Using the existence theorem for abstract economy by Kim [8], we prove the existence of solutions for (GMQGS) in the framework of Hausdorff topological vector spaces. As an application, an existence result of a system of generalized vector quasi-variational inequalities is derived.

Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points of Demicontractive Single-valued and Quasi-nonexpansive Multi-valued Mappings

  • Onjai-uea, Nawitcha;Phuengrattana, Withun
    • Kyungpook Mathematical Journal
    • /
    • 제59권4호
    • /
    • pp.703-723
    • /
    • 2019
  • In this paper, we consider a common solution of three problems in real Hilbert spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed point problem for demicontractive single-valued and quasi-nonexpansive multi-valued mappings. To find the solution we present a new iterative algorithm and prove a strong convergence theorem under mild conditions. Moreover, we provide a numerical example to illustrate the convergence behavior of the proposed iterative method.

VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

  • CHOUGUI, NADHIR;DRABLA, SALAH;HEMICI, NACERDINNE
    • 대한수학회지
    • /
    • 제53권1호
    • /
    • pp.161-185
    • /
    • 2016
  • We consider a mathematical model which describes the quasistatic frictional contact between a piezoelectric body and an electrically conductive obstacle, the so-called foundation. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with Signorini's conditions and a version of Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation for the model, in the form of a system for the displacements, the electric potential and the adhesion. Under a smallness assumption which involves only the electrical data of the problem, we prove the existence of a unique weak solution of the model. The proof is based on arguments of time-dependent quasi-variational inequalities, differential equations and Banach's fixed point theorem.

ALTERNATED INERTIAL RELAXED TSENG METHOD FOR SOLVING FIXED POINT AND QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS

  • A. E. Ofem;A. A. Mebawondu;C. Agbonkhese;G. C. Ugwunnadi;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.131-164
    • /
    • 2024
  • In this research, we study a modified relaxed Tseng method with a single projection approach for solving common solution to a fixed point problem involving finite family of τ-demimetric operators and a quasi-monotone variational inequalities in real Hilbert spaces with alternating inertial extrapolation steps and adaptive non-monotonic step sizes. Under some appropriate conditions that are imposed on the parameters, the weak and linear convergence results of the proposed iterative scheme are established. Furthermore, we present some numerical examples and application of our proposed methods in comparison with other existing iterative methods. In order to show the practical applicability of our method to real word problems, we show that our algorithm has better restoration efficiency than many well known methods in image restoration problem. Our proposed iterative method generalizes and extends many existing methods in the literature.

Computational solution for the problem of a stochastic optimal switching control

  • Choi, Won-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.155-159
    • /
    • 1993
  • In this paper, we consider the problem of a stochastic optimal switching control, which can be applied to the control of a system with uncertain demand such as a control problem of a power plant. The dynamic programming method is applied for the formulation of the optimal control problem. We solve the system of Quasi-Variational Inequalities(QVI) using an algoritlim which involves the finite difference approximation and contraction mapping method. A mathematical example of the optimal switching control is constructed. The actual performance of the algorithm is also tested through the solution of the constructed example.

  • PDF