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EXISTENCE AND ALGORITHM OF
SOLUTIONS FOR GENERALIZED MIXED
QUASI-VARIATIONAL-LIKE INEQUALITIES

ZEQING L1Uu, HONGYAN GUAN,
S00 HAK SHIM, AND SHIN MIN KANG

ABSTRACT. In this paper, we introduce and study a new class
of generalized mixed quasi-variational-like inequalities. Using the
auxiliary principle technique, we construct a new iterative algo-
rithm for finding the approximate solutions of the generalized mixed
quasi-variational-like inequality. An existence result of solutions for
the generalized mixed quasi-variational-like inequality and the con-
vergence of the iterative algorithm are also established. Our results
extend, unify and improve many recent known results.

1. Introduction

It is well known that the auxiliary principle technique plays an impor-
tant role in variational inequality theory. In 1990, Bose[4] studied a class
of general nonlinear variational inequalities by using auxiliary principle
technique. Afterwards, Ding[10], Ding and Luo[13], Huang and Fang[16]
and others extended the results in [4] to several classes of generalized
mixed variational inequalities, generalized mixed quasi-variational in-
equalities and generalized set-valued nonlinear quasi-variational-like in-
equalities.

Inspired and motivated by the results [1-29] and [31}, in this paper, we
introduce and study a new class of generalized mixed quasi-variational-
like inequalities. Using the auxiliary principle technique, we construct
a new iterative algorithm for finding the approximate solutions of the
generalized mixed quasi-variational-like inequality. An existence result
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of solutions for the generalized mixed quasi-variational-like inequality
and the convergence of the iterative algorithm are also established. Our
results extend, unify and improve many recent known results.

2. Preliminaries

Let H be a real Hilbert space with a norm ||-|| and inner product (-, -),
respectively. Assume that I and 2¥ denote the identity mapping on H
and the family of nonempty subsets of H, respectively. Let K : H — 28
be a set-valued mapping such that for each z € H, K(z) is a closed
convex subset of H. Suppose that N: Hx HxH — H,n: HxH — H,
A, B,C and g : H — H be mappings. Let b: H x H — R be a real
mapping satisfying the following conditions:

(C1) b is linear in the first argument;

(C2) b is convex in the second argument;

(C3) b is bounded, that is, there exists a constant v > 0 satisfying

|b(u, v)| < yllullllvll, Yu,ve H;
(C4) b(u,v) — b(u, w) < b(u,v — w), Yu,v,w € H.

For a given f € H, we consider the following generalized mixed quasi-
variational-like inequality: Find x € H such that z € K(zx) and

(N(A(z), B(2), C()) — f,m(9(y), 9(x)))

(21) + b(w,y) - b(x,z) >0, Vye K(x)

Now we consider some special cases of the problem (2.1):

(A)If f =0, K =1, b(z,y) = f(y), N(A(z), B(x),C(z)) = A(z) —
B(z) and n(g(y), 9(z)) = g(y) — g(z) for all x € H, then the problem
(2.1) is equivalent to finding x € H such that

(A(z) - B(z),9(y) — 9(2)) 2 f(2) = f(v), Vye€H,
which was introduced and studied by Yao[31].

(B) If f = 0, N(A(z), B(z),C(z)) = A(z), n(g(y),9(z)) = n(y, ),
b=0and K(z) = K for all z € H, where K is a closed convex subset
of H, then the problem (2.1) is equivalent to finding x € H such that

(A(z),n(y,z)) =0, Vy€K.
which was introduced and studied by Parida, Sahoo and Kumar([29].

In order to get our main results, we need the following definitions and
Lemmas.
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DEFINITION 2.1. Let A, B: H - Hand N : Hx Hx H — H be
mappings. The mapping N is said to be

(1) strongly monotone with respect to A in the first argument if there
exists a constant « > 0 satisfying

(N(A(z),u,0) = N(A(y),u,v),2 ~ y) > allz — y|*, Va,y,u,v € H;

(2) relazed monotone with respect to B in the second argument if
there exists a constant 3 > 0 satisfying

(N(u, B(z),v) — N(u, B(y),v),z — y) > =Bl —yl|?>, Vz,y,u,ve H;

(3) Lipschitz continuous with respect to the first argument if there
exists a constant a > 0 satisfying

IN(z,u,v) = N(y,w,0)l| <allz —yll, ¥z,y,u,v€ H.

Similarly, we can define the Lipschitz continuity of N with respect to
the second and third arguments, respectively.

DEFINITION 2.2. A mapping g : H — H is said to be Lipshitz con-
tinuous if there exists a constant b > 0 satisfying

lg(x) — gl < bllz —yll, Vz,y € H

DEFINITION 2.3. Let n: H Xx H — H and g : H — H be mappings.
The mapping 7 is said to be

(1) strongly monotone with respect to g if there exists a constant
& > 0 such that :

(n(g(z), 9(y)),z —y) = &llz —yl|?>, Va,y € H;

(2) Lipschitz continuous if there exists a constant ¢ > 0 satisfying

ln(g(=), gDl < cllw —yll, VryeH.
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HypPOTHESIS 2.1. Let n: H x H — H and g : H — H be mappings
and

(1) n(z,y) +n(y, 2) = n(x, 2), Vo, y,z € H;

(2) z—y = u—v implies that n(g(z), 9(y)) = n(g(u), 9(v)), V&, y,u,v €
H;

(3) For each ¢ € H, the mapping y — (N(A(z),B(z),C(x)) —
fyn(g(y), g(x))) is convex and lower semicontinuous on H.

In order to solve the generalized mixed quasi-variational-like inequal-
ity (2.1), we consider the following auxiliary variational inequality prob-
lem: for any given f € H and z € H, find a unique w € K(x) such
that

(w,y —w) > (z,y —w)
(2.2) — p{(N(A(z), B(z), C(z)) — f,n(9(y), g(w)))
—pb(.’E,y)-l—pb(.’L‘,’U)), Vye K(CL’),

where p is positive constant.

LEMMA 2.1. Let K : H — 2H be such that for each x € H, K(x) is
a nonempty closed convex subset of H. Let A, B, C andg: H — H,
N:HxHxH—H,n: HxH — H be mappings andb: Hx H — R
be such that for any given x € H, the functional y w— b(x,y) is proper
convex and lower semicontinuous on H. Suppose that Hypothesis 2.1
holds. Then for any given x € H and f € H, the functional J : K(x) —
R defined by

J() =3,y + i),
(2.3) i(y) = p(N(A(z), B(z),C(z)) — f,n(9(y), 9(x)))
—I-pb(.’B, y) - (:c,y)

has a unique minimum point w € K(x) and w is the unique minimum
point of J on K (x) if and only if w is a unique solution of the auxiliary
variational inequality problem (2.2).

PROOF. Since the functionals y — 7(g(y), g(z)) and y +— b(z,y) are
proper convex and lower semicontinuous for each x € H, it is easy
to show that j(y) is proper convex lower semicontinuous on K(x) and
J(y) is strictly convex lower semicontinuous on K(x). It follows from
Theorem 2.5 of [30, p. 25] that j is bounded from below by a hyperplane
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r(y) = (h,y) +r for any y € H, where h € H and r € R. Hence we have

1 ) 1
T(y) = 50w 9) +3() 2 Sl + y) +
_ 1 2 Lo
o [
which implies that
(2.4) J(y) — oo as |yl — oo.

Let {yn}n>0 C K(z) is a minimizing sequence of J on K (z), that is,

lim J(y,) =d and d= inf J(y).

n—oo yeK(x)
We claim that {y,}n>0 is bounded. Otherwise, there exists a subse-
quence {yn, }k>0 of {yn}n>0 such that ||y, || >k, £=1,2,--- . In light
of (2.4), we infer that

J(Yn,) — 00 as k — oo,

which is a contradiction. Therefore there exists a constant r; > 0 such
that

{Yntn>0 C K(z) N B(0,m) ={y € K(z) : [ly]| < r}.

The Weierstrass Theorem (see [30, p. 24]) ensures that there exists w €
K(z) such that J(w) = minye g () J(y). It follows from that strict con-
vexity of J that w is a unique minimizing point of J on K(z).

Now assume that w is a solution of the auxiliary variational inequality
problem (2.2). It follows from (2.3) that

3(9) — w,0)
= %[(w—ky—w,w—i-y—w)— (w, w)]
= (w,y—w>+%<y—way“w>
> (w,y —w)
2

x,y —w) — p(N(A(z), B(z), C(x)) — f,n(9(y), g(w)))
+ pb(z, w) — pb(z,y)
= (z,y) — (v, w) — p(N(A(z), B(z),C(x)) — f,n(9(y), 9(x)))
+ p(N(A(z), B(z),C(2)) — f,n(g(w), 9(x)))
+ pb(z, w) — pb(z,y),
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which implies that J(y) > J(w) for all y € K(z). That is, J(w) =
minye xs) J(3).

Conversely, suppose that w is a unique minimizing point of J on
K(z). For any y € K(z) and t € [0, 1], we have

T(w) = 5 w,u) +j(w)
< I+ iy —w)
= S+ tly = w),w+ by — w) + (w + 1y — )
2
< %(w,'w)+%<y—~w>y~W>+t<w,y—w)+J’('w)
FH(j(y) — w).

It follows that

%<y_w’y“w>+<w’y*w>+j(y)—J'(UI) > 0.

Letting ¢ — 0 in the above inequality, we deduce that

(w,y —w) + p(N(A(z), B(z),C(x)) - f,n(g(y), g(x)))
+ pb(z,y) — (z,y) — p(N(A(z), B(z), C(x)) — f,n(g9(w), 9(z)))
— pb(z, w) + (z,w) > 0.

This is,

(w,y —w) = (z,y — w) — p(N(A(z), B(z), C(x)) — f,n(9(y), g(w)))
— pb(z,y) + pb(z,w), Vye K(z).

Hence w is a solution of the auxiliary variational inequality problem
(2.2). This completes the proof. O

Based on Lemma 2.1 and the auxiliary variational inequality prob-
lem (2.2), we now suggest and analyze the following iterative algorithm
for finding the approximate solutions of the generalized mixed quasi-
variational-like inequality (2.1).

ALGORITHM 2.1. Let K : H — 2H be such that foreachz € H, K(x)
is a nonempty closed convex subset of H. Let A, B, C andg: H — H,
N:HxHxH —- Hn:HxH — Handb: HxH — R be
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mappings. For given zo € H and f € H, compute sequence {Z, }n>0 by
the following scheme

<1'n+1v Yy — xn+1> > <xn, y— xn—}—l)

- p<N(A(:L‘n), B(xn)’ C(mn)) - fv 77(9(?4)7 g(xn+1))>
— pb(xn,y) + pb(xp, Tny1), Yy € K(zy,), n >0,

where p is a positive constant.

3. Main result

In this section, we prove the existence of solutions of the generalized
mixed quasi-variational-like inequality (2.1) and the convergence of the
sequence generated by Algorithm 2.1.

THEOREM 3.1. Let A, B, C, m, g : H — H be Lipschitz continuous
with constants a, p, ¢, h, |, respectively. Assume that N : Hx Hx H —
H is Lipschitz continuous with respect to the first, second and third
arguments with constants t, s, k, respectively, and is strongly mono-
tone with respect to A in the first argument with constant «, relaxed
monotone with respect to B in the second argument with constant 3,
respectively. Suppose that n: H x H — H is Lipschitz continuous and
strongly monotone with constants d and &, respectively and Hypothesis
2.1 holds. Let b: H x H — R satisfy (C1)-(C4) and K : H — 2 be a
set-valued mapping such that K(x) = m(x) + K for each x € H, where
K is a closed convex subset of H. Let

L = (ta+ sp)v/1— 2€ + d2h? + cdhk + 7.

Suppose that there exists a constant p > 0 satisfying
(3.1) 20+ pL < 1
and one of following conditions:

(sp+ta)® > L,

(0= B8—(L—20))*> ((sp+ta)> — L)4l(1 1),

(sp+ta)2—1L
Vie—B8—(L—-20))2—((sp+ta)2— L)1 -1)
(sp+ta)?—L ’
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(sp+ta)? < L,
a-B-L(1-2)

(3.3) P Tprta)—L
S V(e—8—(L—-20))2~—((sp+ta)?—L)4(1-1)
L — (sp+ta)? '

Then for each f € H, the sequence {x,, } >0 generated by Algorithm 2.1
converges strongly to x* and z* is a solution of the generalized mixed
quasi-variational-like inequality (2.1).

Proor. It follows from (C1)—(C4) that y — b(z,y) is convex and
continuous for each « € H. In view of Lemma 2.1, we infer that the

auxiliary variational inequality problem (2.2) has a unique solution w in
K (x). It follows from Algorithm 2.1 that

($n+1, y— $n+1)
Z (xna Y- .’L'n+1>

(34) — N (A(n), B@n), Cen)) — £1(9(0),9(@ns1)))
= Pb(Zn,y) + pb(Tn, Tnt1), Yy € K(zn)
and
(Ens — Tnsa)
(35) > (Tny1,Y = Tnyo)

— PN (A(Znt1), B(Znt1), C(@n+41)) — f,1(9(y), 9(#n+2)))
- pb(iL'n_H, y) + pb(xn+17 $n+2)’ Vy € K(xn+1)

for all n > 0. Adding (—m(zn),y — Zn+1) to two sides of the inequality
(3.4) and taking y = Zpt12 — M(Tny1) + m(zn) € K(zp), we get that

(Znt1 = M(Tn), Tutz — M(Tny1) + M(Tn) — Tnt1)
2 (Tn — M(Tn), Tnt2 — M(Tnt1) + M(Tn) = Tny1)
(3.6) — p(N(A(zn), B(zn), C(2n)) — f,0(9(Tnt2 — m(Tns1)
+m(zn)), 9(Tn+1))) — PY(Tn, Tnt2 — M(Tnt1) + m(zn))
+ pb(Tn, Znt1), Vn >0.

Adding (—m(Zn+1),y — Tnr2) to two sides of the inequality (3.5) and
substituting y = xn41 — m(xn) + m(xp4+1) € K(zy) into it, we derive



Generalized mixed quasi-variational-like inequality 717

that

(Tnt2 — M(Tnt1), T — M(Tn) + M(Trs1) — Tnia)
2 (Tnt1 = MTpt1); Tntr — M(Tn) + M(Tng1) — Tns2)
(3.7) = p(N(A(@n+1), B(xnt1), C(@nt1)) —
N(g(znt1 — m(zn) + M(Tnt1)), g(Tn+2)))
= pb(Tnt1,Y) + PO(Tnt1, Tnt2), YR 0.

It follows from (C1)—(C4), Hypothesis 2.1, (3.6) and (3.7) that

(Tng1 — Tntz — M(Tn) + M(Tnt1), Tntl — Tni2
—m(zn) + M(Tnt1))
<A@ — Tt — M(xy) + M(Tpi1), Tl — Tnt2
—m(xn) + m(Tny1)) — P(N(A(2n), B(zn), Clzn)) — f
— (N(A(@n41), B(@nt1), C(an+1)) — f),
M(9(Tns1 — Tny2), 9(M(Tn) — m(Tny1))))
— pb(Tnt1 — Tp, Tnt1 — Tniz — m(xy) + m(Tpt1))
< fllmlzn) = m(zp4a)||
+ oyl zat1 — Zallllzns1 — Tag2 — m(zn) + m(@Tng)||
+ |20 — Tnt1 — p(N(A(zn), B(), C(zn))
= N(A(zn41), B(znt1), Clzn))) |l
+ pIN(A(zy), B(zn), C(74))
— N(A(znt1), B(znt1), Clan))||
X NTnt1 — Toy2 — m(Tn) + M(Tp41)
— 7(g(Tnt1 — Tnr2), g(M(@n) — M(@n41)))ll
+ pIIN(A(zn+1), B(zn41), C@ni1))
— N(A(@n41), B(zns1), Clzn))||
X [n(g(znt1 — Tns2), g(mzn) — m(@ns1)))l, Vn 2 0.

Since N : H x H x H — H is Lipschitz continuous with respect to the
first, second and third arguments, respectively, and is strongly monotone
with respect to A in the first argument, relaxed monotone with respect
to B in the second argument, and A, B, and C are Lipschitz continuous,
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we have

|Zn ~ Znt1 — p(N(A(zn), B(zn), C(zr))
— N(A(@n+1), B(Zns1), Czn)))?
= [|Zn = Znt1]|* = 20(n — Zpt1, N(A(22), B(zn), C(@n))
—~ N(A(Zn+1), B(za), C(24)))
~20(zn = Znt1, N(A(Zn+1), B(zn), C(2n))
(3.9) — N(A(Zn+1), B(zn+1), Czn)))
+ P*(IN(A(@n), B(zn), C(xn))
— N(A(zn+1), B(za), C(z0))|
+ IN(A(@n+1), B(zn), C(24))
— N(A(znt1), B(@nt1), C(za)))?
< (1 =2(a~ B)p+ p*(ta + sp)*) |z — ylI?

and

IN(A(Zn+1), B(Tnt1), Czn))
(3.10) — N(A(zn+1), B(®n+1), C(@n11))|l
< ckl|zn — Tpta |l

for all n > 0. It follows from the Lipschitz continuity of 77, ¢ and m that

”wn+1 — Tn42 — m(mn) + m(xn-i—l)
(3.11) — 0(9(Zns1 ~ Tas2), g(M(Tn) — M(Tn41)))|?
< (1 =26+ @R xnt1 — Tpsz — M(zn) + m(Tnr1)l|?

and

(3.12) [m(zn) = m(zas1)l| < Ulzn — Tniall

for all n > 0. In view of (3.8)—(3.12), we conclude that
Zn+1 — Znt2ll < Ollzn — Zniall, Vn >0,

where

(3.13) 0 =2l + pL + /1 —2(a — B)p + p2(ta + sp)2.



Generalized mixed quasi-variational-like inequality 719

It is easy to verify that (3.1) and one of (3.2) and (3.3) yield that 6 < 1.
This implies that {z,},>¢ is a Cauchy sequence in H. Let z,, — z* € H
as n — oo. Lemma 2.1 ensures that there exists a unique w € K(z*)
satisfying

(w,y —w)
(3.14) 2 &%y —w) — p(N(A(z"), B(z"),C(z%)) = f.n(g(y), 9(w)))
— pb(z*,y) + pb(z™,w), VYy€ K(z*).

In view of (3.4), (3.14) and the above proof, we infer that
[Zn1 —w] < Ollzn, — 2|, VYn >0,

which implies that z,, — w as n — oco. That is, 2* = w. Therefore,
x* is a solution of the generalized mixed quasi-variational-like inequality
(2.1). This completes the proof. O
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