• 제목/요약/키워드: quasi­variational inequalities

검색결과 26건 처리시간 0.026초

WELL-POSED VARIATIONAL INEQUALITIES

  • Muhammad, Aslam-Noor
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.165-172
    • /
    • 2003
  • In this paper, we introduce the concept of well-posedness for general variational inequalities and obtain some results under pseudomonotonicity. It is well known that monotonicity implies pseudomonotonicity, but the converse is not true. In this respect, our results represent an improvement and refinement of the previous known results. Since the general variational inequalities include (quasi) variational inequalities and complementarity problems as special cases, results obtained in this paper continue to hold for these problems.

ON GENERALIZED VECTOR QUASI-VARIATIONAL TYPE INEQUALITIES

  • Cho, Y.J.;Salahuddin, Salahuddin;Ahmad, M.K.
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.49-58
    • /
    • 2010
  • In this paper, we consider and study a new class of generalized vector quasi-variational type inequalities and obtain some existence theorems for both under compact and noncompact assumptions in topological vector spaces without using monotonicity. For the noncompact case, we use the concept of escaping sequences.

ON OPTIMAL SOLUTIONS OF WELL-POSED PROBLEMS AND VARIATIONAL INEQUALITIES

  • Ram, Tirth;Kim, Jong Kyu;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.781-792
    • /
    • 2021
  • In this paper, we study well-posed problems and variational inequalities in locally convex Hausdorff topological vector spaces. The necessary and sufficient conditions are obtained for the existence of solutions of variational inequality problems and quasi variational inequalities even when the underlying set K is not convex. In certain cases, solutions obtained are not unique. Moreover, counter examples are also presented for the authenticity of the main results.

COMPARISON EXAMPLES ON GENERALIZED QUASI-VARIATIONAL INEQUALITIES

  • Kum, Sang-Ho
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.371-377
    • /
    • 1999
  • The purpose of this paper is to provide two examples which prove that Cubiotti's theorem and Yao's one on the generalized quasi-variational inequality problem are independent of each other. In addition, we give another example which tells us that certain conditions are essential in Cubiotti's theorem and Yao's one.

  • PDF

REGULARIZED MIXED QUASI EQUILIBRIUM PROBLEMS

  • Noor Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.183-191
    • /
    • 2007
  • In this paper, we introduce and study a new class of equilibrium problems, known as regularized mixed quasi equilibrium problems. We use the auxiliary principle technique to suggest and analyze some iterative schemes for regularized equilibrium problems. We prove that the convergence of these iterative methods requires either pseudomonotonicity or partially relaxed strongly monotonicity. Our proofs of convergence are very simple. As special cases, we obtain earlier results for solving equilibrium problems and variational inequalities involving the convex sets.

AN EXTENSION OF GENERALIZED VECTOR QUASI-VARIATIONAL INEQUALITY

  • Kum Sang-Ho;Kim Won-Kyu
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.273-285
    • /
    • 2006
  • In this paper, we shall give an affirmative answer to the question raised by Kim and Tan [1] dealing with generalized vector quasi-variational inequalities which generalize many existence results on (VVI) and (GVQVI) in the literature. Using the maximal element theorem, we derive two theorems on the existence of weak solutions of (GVQVI), one theorem on the existence of strong solution of (GVQVI), and one theorem on strong solution in the 1-dimensional case.

A NOTE ON A REGULARIZED GAP FUNCTION OF QVI IN BANACH SPACES

  • Kum, Sangho
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.271-276
    • /
    • 2014
  • Recently, Taji [7] and Harms et al. [4] studied the regularized gap function of QVI analogous to that of VI by Fukushima [2]. Discussions are made in a finite dimensional Euclidean space. In this note, an infinite dimensional generalization is considered in the framework of a reflexive Banach space. To do so, we introduce an extended quasi-variational inequality problem (in short, EQVI) and a generalized regularized gap function of EQVI. Then we investigate some basic properties of it. Our results may be regarded as an infinite dimensional extension of corresponding results due to Taji [7].