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REMARKS ON VARIATIONAL

INEQUALITIES AND GENERALIZED

QUASI-VARIATIONAL INEQUALITIES

SANGHO KUM

1. Introduction

The problem of solving quasi-variational inequality (in short, QVI)
was originally introduced by Bensoussan and Lions in 1973 (see [3]) in
connection with some stochastic impulse control problems. Problems
of QVI arise in the applications such as free-boundary problems, com­
plementarity problems, mathematical economics and management. For
a paper in which quasi-variational inequalities are studied, see Mosco
[12].

Inspired by earlier works, some authors, e.g., Ding, Shih and Tan
considered an abstract generalized quasi-variational inequality problem
(in short, GQVI) from a theoretical standpoint. Shih and Tan [14,
Theorems 3 and 4] obtained existence theorems for GQVI and Kim
[9] gave a generalization of Shih and Tan [14, Theorem 4] in a real
Hausdorff locally convex topological vector space.

The aim of this paper is to unify and extend the above results to
non-compact setting. We first give a more general formulation of Shih
and Tan [14, Theorem 3], then we give a theorem which simultaneously
generalizes Shih and Tan [14, Theorem 4] and Kim [9]. In the second
part of this paper, we generalize and combine Bae, Kim and Tan [2,
Theorem 4] and Tan [16, Theorem 3]. Our proofs are based on 'net
argument', which gives another refined proofs for the results of the
authors.
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2. Preliminaries

Sangho Kum

Let 2x be the set of all nonempty subsets of X for a topological
space X.

Let X and Y be topological spaces and D : X --t 2Y a multifunction.
We denote by D(X) the image of D, namely, the set U{D(x)\x EX}.

Let E be a real Hausdorff topological vector space, and E* its
topological dual. A multifunction D : X --t 2E is said to be upper
hemicontinuous if for each f E E* and for any real a, the set {x E
XlsuPYED(x) f(y) < a} is open in X. It is well known that an upper
.semicontinuous multifunction is upper hemicontinuous. From now on,
X is always assumed to be a nonempty convex subset of E.

A multifunction T : X --t 2E * is said to be monotone on X if for
each x and y in X, each u in T(x), and each w in T(y), (w-u,y-x) ~ 0,
and semi-monotone on X if for any x, y E X,

inf (u, y - x) ~ inf (w, y - x).
uET(x) wET(y)

It is clear that a monotone multifunction T is semi-monotone. But the
following example shows that the converse is not true.

. .{ [0,00)
T : R --t R, T(x) = ]

(-00,0
if x ~O

if x < o.

Let cc(X) [kc(X)] denote the set of all nonempty closed [ compact]
convex subsets of E contained in X.

We denote by co and - the convex hull and closure, respectively,
with respect to E.

The inward set of X atx E E,Ix(x) is defined as follows:

Ix(x)=x+ U r(X-x).
r>O

3. A generalization of QV! of Shih and Tan

We begin this section with the following theorem.
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THEOREM 1. (Ding and Tan (5, Theorem 1]) Let X be a convex
subset in a Hausdorff topological vector space E. Let </> and t/J be two
real valued functions on X x X having the following properties:

(1.1) t/J(x, x) ::; 0 for all x EX;
(1.2) for each fixed x EX, </>(x, y) is a lower semicontinuous function

of y on K' for each nonempty compact subset K' of X;
(1.3) for each fixed y E X, the set {x E Xlt/J(x, y) > O} contains the

convex hull of the set {x E X/</>(x, y) > a};
(1.4) there is a nonempty compact convex subset L of X and a

nonempty compact subset K of X such that for each y E X\K, there
exists an x E co(LU {y}) with </>(x,y) > O. Then there exists a f) E K
such that </>(x, f)) ::; 0 for all x EX.

From now on, let us denote by E a real Hausdorff locally convex
topological vector space. We present the following theorem which is a
more general formulation of Shih and Tan [14, Theorem 3].

THEOREM 2. Let X be a paracompact convex subset of E, L a
nonempty compact convex subset of X and K a nonempty compact
subset of X. Let E* be the topological dual of E equipped with the
strong topology. Let S : X -+ cc(X) be upper hemicontinuous and
T : X -+ kc(E*) upper semicontinuous. Assume that the set

E:= {Y E X I sup inf (z, y - x) > O}
xES(y) zET(y)

is open in X. Assume further that for each y E X\K, there exists an
x E S(y)nh(y) withinfzET(y) (z,y-x) > O. Then thereexistsaf) E X
such that

(2.1) y E S(y) and
(2.2) there is a 2 E T(f)) with (2, f) - x) ::; 0 for all x E S(f)).

Proof. We follow the method in (14], so we divide the proof into
two steps:

Step 1. We assert that there exists a f) E X such that y E S(y) and

sup inf (z, f) - x) ::; O.
xES(i/) zET(i/)
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Suppose that the assertion is false. Then for all yE X, either y rt S(y)
or there exists an x E S(y) such that infzET(y) (z, y - x) > O. By
the separation theorem for a Hausdorff locally convex space, whenever
y rt S(y), there exists apE E* with (p, y) - sUP:l:ES(y) (p, x) > O. For
each y E X, we set

a(y):= sup inf (z, y - x).
:l:ES(y) zET(y)

Let Vo := {y E Xla(y) > O}, and for each p E E*, we set

V(p):= {y E XI (p,y) - sup (P,x) > o}.
:l:ES(y)

Since E = Vo,X = Vo U UPEE* V(p). By hypothesis, Vo is open in
X. By the upper hemicontinuity of S, V(p) is open in X for every
p E E*. Since X is paracompact, there exists a continuous partition of
unity {,8o,,BP}PEE* subordinate to the covering {Vo, V(P)}pEE*. Thus
for each 0 and p E E*, (30 and (3p are nonnegative real continuous
functions on X, with their supports supp (30 C Vo and supp (3p C V(p).
The family {supp (30, supp (3p}pEE* is a locally finite covering of X and
EjEE*U{O} ,Bj(x) = 1 for all x EX. Let us define </> : X X X -7 R by

</>(x, y) := (3o(y) inf (z, y - x) + L (3p(y) (p, y - x).
zET(y) pEE*

Clearly,
(2.3) </>(x,x) = 0 for all x EX.
(2.4) For each x E X, </>(x, y) is a lower semicontinuous function of

y on each compact subset K' of X. Indeed, consider the function

f(y):= inf (z,y-x)=- sup (z,x-y).
zET(y) zET(y)

Since E* has the strong topology and K' is bounded, W(z, y) = (z, x­
y) is continuous on E* X K'. In addition, T is upper semicontinuous
and has a compact value for each y E X. By Aubin and Cellina [1,
Theorem 5, p.52], for each x E X, fey) = -SUPzET(y) (z,x - y) is a
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lower semicontinuous function of y on K'. Hence, so is the function
y ...... !3o(Y) infzET(y) (z, Y - x) by Takahashi [15, Lemma 3]. Moreover,
the function y ...... EpEE. !3p (y) (P, y - x) is continuous on X. Thus
y ...... <fJ(x, y) is lower semicontinuous on each compact set K' c X.

(2.5) For each yE X, <fJ(x, y) is a concave function of x on X. Indeed,
x ...... !3o(Y) infzET(y) (z, Y - x) is concave and

x H L !3p (Y) (p,y - x)
pEE·

is affine, and hence x ...... <fJ(x,y) is concave.
(2.6) For each yE X\K, there is an x E co(LU{y}) with <fJ(x, y) > o.

Indeed, by hypotheses, there exists an Xo E S(y) n h(y) such that
!3o(Y) infzET(y) (z,y - xo) ~ o. In case !3o(Y) = 0, we may assume that

n

<fJ(xo,y) = L !3p (Y) (p,y - xo) = L !3Pi(y) (pi,y - xo)
pEE· i=l

for some positive integer n (!3Pi(y) =I 0, i = 1, ... ,n). Since y belongs
to n~l V(Pi) and Xo E S(y), E~l !3Pi(y)(Pi,y - xo} > O. Hence,
<fJ(xo, y) > O. In case !3o(Y) > 0, we can show that <fJ(xo, y) > 0 in
a similar way. Note that h(y) = Ico(Lu{y}) (y) because L is convex.
Moreover, Ico(Lu{Y}) (y) is in fact the set

A := {u EElu = y + r(v - y) for some v E co(L U {y}), r ~ I}.

Thus, we have an x E co(L U {y}) such that Xo = Y + r(x - y) with
r ~ 1. Hence,

1 1
<fJ(x,y) = <fJ(-xo + (1- -)y,y)

r r
1 1

~ - <fJ(xo, y) + (1 - -) <fJ(y, y)
r r
1

= - <fJ( Xo, y) > 0
r

by the concavity of <fJ in its first variable. Therefore, for each y E X\K,
there exists an x E co(L U {y}) such that <fJ( x, y) > O. By Theorem 1
with <fJ = t/J, there exists a fj E K such that

<fJ(x, f) ~ 0 for all x E X. (2.7)
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Now we show that there exists an x E B(y) with <!J(x, y) > O. H
{Jo(Y) = 0, then <!J(x,y) = 2::=1 (3Pi(y) (Pi,y - x} where Pi'S are given
elements of E* and {JPi(fJ) > O. Since y E n?=l V(Pi),

(Pi, fJ} > sup (Pi, x} ~ (Pi, x}
xES(y)

so that (pi, y-x} > 0 for all x E BeY): Thus <!J(x, y) > 0 for all x E B(Y)·
H {Jo(y) > 0, then yE Voso that a(y) > O. Hence, infzET(y) (z, y-x} ~
i a(y) > 0 for some x E BeY). Using similar argument as above, we can
also assert that <!J(x, y) > 0 for some x E B(Y). In any case, there exists
an x E B(y) with <!J(x, y) > 0, which contradicts (2.7). This proves Step
1.

Step 2. There exists a 2 E T(fJ) such that (2, y-x} ~ 0 for x E B(Y).
Indeed, define F : B(y) x T(y) - R by

F(x,z):= (z,y - x}.

Note that for each x E B(y), z 1-+ F(x, z) is continuous and affine and
for each z E T(y), x 1-+ F(x,z) is affine. Thus by Kneser's minimax
theorem [10], we have

min sup F(x,z) = sup min F(x,z)
zET(y) xES(y) xES(y) zET(y)

Hence,

min sup F(x,z) = min sup (z,y - x} ~ 0
zET(y) xES(y) zET(y) xES(y)

by Step 1. Since T(y) is compact, there exists a 2 E T(y) such that
(2, fJ - x} ~ 0 for all x E B(Y). This completes our proof.

In order to generalize results of Kim [9] and Shih and Tan [14,
Theorem 4], we need the following.

LEMMA 1. Let E* be equipped with the strong topology. Let X be
a nonempty bounded subset of E and C a nonempty compact subset
of E*. Define f : X - R by

f(x) := min(z,x} for all x E X.
zEC

Then f is weakly continuous on X.

Proof. This is immediate since the functions {(u, .} lu E C} are
weakly equicontinuous.
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THEOREM 3. Let X, L, K, E* and T be as in Theorem 2. In ad­
dition, let X be a bounded subset of E, S : X ~ kc(X) a continu­
ous multifunction, and T(X) C D for some compact subset D of E*.
Assume that for each Y E X\K, there is an x E S(y) n hey) with
infzET(y) (z, y - x) > o. Then the conclusion of Theorem 2 holds.

Proof. By Theorem 2, it suffices to show that the set

A:= {Y E XI sup inf (z, y - x) ~ O}
zES(y) zET(y)

is closed in X. Let (Yar)arEr be a net in A and Yo E X such that Yar ~ Yo.
Since T(yo) and S(yo) are compact, by Lemma 1, there is an Xo E S(Yo)
such that

sup inf (z, Yo - x) = inf (z, yo - xo). (3.1)
zES(yo) zET(yo) zET(yo)

By the lower semicontinuity of S, we obtain a net (Xar)arEr in X such
that for each a E r, Xar E S(Yar) and Xar ~ xo. Since Yar E A,

sup inf (z, Yar - x) ~ 0,
zES(Ya) zET(Ya)

so,
inf (z, Yar - x ar ) ~ O.

zET(Ya)

From the compactness of T(Yar), we can choose a Zar E T(Yar) satisfying

inf (z, Yar - x ar ) = (zar, Yar - x ar ) ~ O. (3.2)
zET(Ya)

By hypothesis, there exists a subnet (zar' )ar'Ef' of (Zar)arEr and a Zo E D
such that Zar' ~ zoo Since E* has the strong topology and X is bounded,
we have (zar',Yar' - x ar') ~ (zo,Yo - xo), and hence,

(zo, Yo - xo) ~ 0 (3.3)

from (3.2). Note that the graph of T is colsed in X x E*, so Zo E T(yo).
Therefore,

sup inf (z, Yo - x) = inf (z, Yo - xo)
zES(yo) zET(yo) zET(yo)

~ (zo, Yo - xo)

~O
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by (3.1) and (3.3). This shows that Yo E A, hence, A is closed in X, as
desired. The proof is complete.

As direct consequences of Theorem 3, we obtain two corollaries as
follows.

COROLLARY 2. Let X be a nonempty compact convex subset of
E. Let S: X ---+ cc(X) be continuous and T : X ---+ kc(E*) upper
senllcontinuous. Then there exists a point fi E X such that

(1) fi E S(fi) and
(2) there exists a 2 E T(fi) with (2, fi - x) ~ 0 for all x E S(fi).

Proof. Set X = L = K in Theorem 3. Since T(X) is compact, all
the conditions of Theorem 3 are obviously satisfied. This completes
our proof.

COROLLARY 3. Let E be a normed vector space and E* its dual
space with the usual norm topology. Let X be a convex subset of
E, L a nonempty compact convex subset of X, and K a nonempty
compact subset of X. Let S : X --7 kc(X) be a continuous map and
T: X ---+ kc(E*) an upper semicontinuous map. Assume that for each
Y E X\K, there is an x E S(y) n hey) with infzET(y) (z, y - x) > O.
Then there exists a point fi E X such that

(1) fi E S(fi) and
(2) there exists a 2 E T(fi) with (2, fi - x) ~ 0 for all x E S(fi).

Proof. In fact, the boundedness of X is needed to assure that of
the set {Yo,} U {Yo} in Theorem 3. Moreover, we need the assumption
T(X) CD so as to guarantee that Uo:Er T(yo:) is contained in a com­
pact set. Since E is a normed vector space, we have only to consider a
sequence {Yn} converging to Yo. Clearly, the set {Yn} U{Yo} is compact.
Also U:o T(Yi) is compact. In addition, X is a metric space, so X
is paracompact. Repeating the same argument as in Theorerm 3, we
have the desired conclusion.

REMARK. Corollary 2 is due to Kim [9] and Corollary 3 is a gen­
eralization of Shih and Tan [14, Theorem 4] to noncompact setting.
Observe that our proof is a simple one for Kim's result [9].
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4. A generalization of two results for variational inequali­
ties

In this section, by combining two results of Tan [16, Theorem 3] and
Bae, Kim and Tan [2, Theorem 4], we generalize them at the time.

THEOREM 4. Let E* be equipped with the strong topology. Let
X be a nonempty convex subset of E and T : X --+ 2E* be semi­
monotone such that for each x E X, T(x) is (strongly) compact and
for each one-dimensional Bat NeE, TINnx is upper semicontinuous
from the relative topology of X to the strong topology of E*. Let
M : X --+ 2E * be monotone such that for each one-dimensional Bat
NeE, MINnx is lower semicontinuous from the relative topology of
X to the weak star topology ofE*. Suppose that there exist a nonempty
weakly compact convex subset L ofX and a nonempty weakly compact
subset K of X such that for each y E X\K, there exist a point x E

co(L U {y}) and an ! E M(x) such that infwET(x) (w + !, y - x) > o.
Then there exists a fj E K such that

sup inf (w + !, fj - x) ~ 0 for all x E Ix (f).
fEM(iJ) wET(iJ)

Proof. We divide the proof into three steps.

Step 1. There exist a f) E K such that

sup inf (w +!, fj - x) ~ 0 for all x EX.
fEM(x) wET(x)

Indeed, we define 4>, tP : X x X --+ R by

4>(x, y):= sup inf (w + !, y - x),
fEM(x) wET(x)

tP(x,y):= inf inf (w+!,y-x)
fEM(y) wET(y)

for all x, Y E X. Then we have the following.
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(4.1) We have <p(x,y) ~ 'if;(x,y) for all x,y E X, and 'if;(x , x) = 0 for
all x EX. Indeed,

<p(x, y) = sup inf [(w, y - x) + (f, y - x)]
/EM(x) wET(x)

= sup [(f,y-x)+ inf (w,y-x)]
/EM(x) wET(x)

= sup (f, y - x) + inf (w, y - x)
/EM(x) wET(x)

~ inf (f,y-x)+ inf (w,y-x)
/EM(y) wET(y)

by the monotonicity of M and the semi-monotonicity of T. On the
other hand,

'if;(x,y)= inf inf [(w,y-x)+(f,y-x)]
/EM(y) wET(y) .

= inf [(f,y-x)+ inf (w,y-x)]
/EM(y) wET(y)

= inf (f, y - x) + inf (w, y - x).
/EM(y) wET(y)

Hence <p(x,y) ~ 'if;(x,y) for all x,y ~ X.

(4.2) For each fixed x E X,<p(x,y) is a weakly lower semicontin­
uous function of y on each nonempty weakly compact subset A of
X. Indeed, since A - x is weakly bounded, and hence bounded in E
and T(x) is (strongly) compact, Lemma 1 shows that the function
g(y) := infwET(x) (w, y - x) is weakly continuous on A. Clearly, the
function hey) := sUP/EM(x) (f,y - x) is weakly lower semicontinuous
on A. Therefore, <p(x, y) = g(y)+h(y) is a weakly lower semicontinuous
function of y on A.

(4.3) For each fixed y E X,'if;(x,y) is a concave function of x on X.
Indeed, since

'if;(x,y)= inf (f,y-x)+ inf (w,y-x),
fEM(y) wET(y)

obviously, 'if;(x , y) is a concave function of x on X.
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(4.4) For each yE X\K, by hypothesis, there exist an x E co(LU{y})
and an f E M(x) such that infwET(x) (w + I, y - x) > O. Thus

sup inf (w + I, y - x) > 0,
fEM(x) wET(x)

namely, 4>(x, y) > O. Now we equip E with the weak topology. Then all
the conditions of Theorem 1 are satisfied so that there exists ayE K
such that 4>(x,y) ~ 0 for all x E X, namely,

sup inf (w+l,y-x)sO
fEM(x) wET(x)

for all x EX. This proves Step 1.

Step 2. We assert that sUPfEM(y) infwET(y) (w + I,y - x) s 0 for
all x E X.

Fix x E X arbitrarily. For each t E [0,1], let Zt = tx + (1 - t)y =
Y- t(y - x). Since X is convex, Zt E X for all t E [0,1]. By Step 1,

sup inf (w+l,y-zt)~O for all tE[O,l],
fEM(zd wET(ze)

so that

t sup inf (w + I, y - x) sO for all t E [0,1],
fEM(ZI) wET(ZI)

and hence,

sup inf (w + I,y - x) sO for all t E (0,1], (4.5)
fEM(ZI) wET(ZI)

Let [y,x] be the line segment {z E Xlz = (1 - t)y + tx 0 ~ t ~ I}.
Observe that by giving the reverse order to the set (0,1], we may regard
{ZtlO<t<l as a net converging to y in the line segment [y,x]. Fix an
j E MCY). Since M is lower semicontinuous on [y, xl and Zt -t y, for
each t E (0,1] there exists an It E M(zt) satisfying It -+ j in the weak
star sense. Let Wt E T(zt) be a point such that

(WhY-X) = inf (w,y-x).
wET(zc)

(4.6)
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By (4.5) and (4.6), we have

(ft"y-x}+(Wt,y-x)~ sup (f,y-x)+ inf (w,y-x)
!EM(Zt) wET(zt>

= sup inf (w +!, y - x)
!EM(zt> WET(zt>

~Q ~n

Since T is upper semicontinuous on the compact set [y, x], the image
of T, namely, UtE[O,l] T(Zt) is a (strongly) compact subset of E*, and
hence, there exists a subnet {Wt' h,El of {wt}o<t9 and W E UtE[O,l]

. T(Zt) satisfying Wt' - w. Since It' + Wt' - 1+ W in the weak star
sense,

(ft' +Wt"y - x) - <J +w,y - x).

Hence, by (4.7) we have

(ft' + Wt',y - x) - (j + w,y - x) :::; O. (4.8)

Recall that the graph of Ton [y, x] is closed and Zt' - y. Then, clearly,
to E T(fj). Thus, by (4.8), we have

(1, fj - x) + inf. (W, Y- x) ~ (/, fj - x) + (w, fj - x)
wET(y)

= (/ + w,y - x)
~ o.

Since j is arbitrary, we have

sup [(f,y-x)+ inf (w,y-x)]~O.
!EM(i/) wET(y)

Therefore, we have

sup [(f,y-x)+ inf. (w,y-x)]
!EM(i/) wET(y)

= sup inf (w + I, y - x) ~ 0
!EM(i/) wET(i/)
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for all x E X, as desired.

Step 3. We have sUP/EM(y) infwET(y) (w + f,fJ - x) ::; 0 for all
x E Ix(fJ).

Let x E Ix(fJ); then x = fJ + r(u - fJ) for some u E X and r > O.
Thus fJ - x = r(fJ - u) so that by Step 2,

sup inf (w + f,fJ - x) = r sup inf (w + f,fJ - u)
/EM(y) wET(y) /EM(y) wET(y)

::; O.

This completes the proof.

REMARK. 1. For M = 0, Theorem 4 is due to Bae, Kim and Tan
[2, Theorem 4].

2. For T = 0, Theorem 4 is a generalization of Tan [16, Theorem
3].
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