• 제목/요약/키워드: quantum phase

Search Result 186, Processing Time 0.03 seconds

Photoelectron Transport Across Phospholipid Liposomes Pigmented by Anthracene and Naphthalene Derivatives

  • Lee, Yong-Ill;Kwon, Hwang-Won;Shin, Dae-Hyon;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.120-124
    • /
    • 1986
  • In order to investigate effective solar energy conversion system, the light-induced electron transfer reactions have been examined across single-lamellar liposomes incorporated organic photosensitizers such as anthracene and naphthalene derivatives. We have observed photosensitized reduction of methyl viologen (1,1'-dimethyl-4,4'-$bipyridinium^{2+}$) dissolved in the exterior aqueous phase of the pigmented phospholipid liposomes when EDTA, as electron donor, is dissolved in the enclosed aqueous phase of the liposomes. The anthroyl stearic acid incorporated in the hydrophobic bilayer of liposomes leads to much less quantum yield for the photosensitized reduction of $MV^{2+}$ than the anthracene carboxylate incorporated in the outer hydrophilic layer. However, ${\beta}$-carotene with anthroyl stearic acid incorporated into the bilayer enhances the quantum yield significantly (${\Phi}{\simeq}0.2-0.3$), preventing the reverse reaction of electron transfer ($MV^+_\ {\rightarrow}MV^{2+}$) so that it might be useful for solar energy conversion into chemical energy. A naphthalene derivative, octadecyl naphthylamine sulfonic acid incorporated into the outer layer of liposomes results in less efficiency of $MV^{2+}$ reduction than anthroyl stearic acid. These results have been also tested with respect to lipid components of liposomes.

An investigation of optical characteristics of InGaAsP/InP RWG MQW-LD by LPE method (LPE(Liquid phase Epitaxy)방법으로 제작된 InGaAs/InP Ridge Waveguide Multiple Quantum Well Laser Diode의 광학적 특성조사)

  • 오수환;하홍춘;박윤호;안세경;이석정;홍창희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.266-271
    • /
    • 1996
  • In this study the evaluation of RWG MQW-LD fabricated with our vertical LPE system has been carried out with measuring its optical characteristics. This laser diode operated in lateral single mode as designed, and it showed 77% of internal quantum efficiency, 18cm of internal loss and 5.5$\AA$/$^{\circ}C$ of the thermal characterictic of the lasing wavelength. From these results we conclude that the vertical LPE system are fairly good and it might he useful to fabricate MQW wafer for laser diode.

  • PDF

Fabrication of High Power InGaAs Diode Lasers (고출력 InGaAs레이저 다이오드 제작)

  • 계용찬;손낙진;권오대
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.79-86
    • /
    • 1994
  • Gain-guided broad-area single quantum well separate confinement heterostructure diode lasers have been fabricated from structures grown by metal organic vapor phase epitaxy. The active layer of the epi-structure is InGaAs emitting 962-965nm and the guiding layer GaAs. The channel width is fixed to 150${\mu}$m and the cavity length varys within the range of 300~800${\mu}$m. For uncoated LD's, the output power of 0.7W has been obtaained at a pulsed current level of 2A, which results about 60% external quantum efficiency. The threshold current density is 200A/cm$^{2}$ for the cavity lengths of 800.mu.m LD's. The stain effect upon the transparent current density has been observed. The internal quantum efficiency is expected to be 88% and the internal loss to be 18$cm^{-1}$. The beam divergence has been measured to be 7$^{\circ}$to lateral and 40$^{\circ}$to transverse direction. finally, 1.2W continuous-wave output power has been obtained at a current level of 2A for AR/HR coated LD's die-bonded on Cu heat-sink and cooled by TEC.

  • PDF

Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques

  • Sharma, Teena;Maddila, Ravi Kumar;Aljunid, Syed Alwee
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.531-540
    • /
    • 2019
  • Spectral Amplitude Coding Optical Code Division Multiple Access (SAC OCDMA) is an advanced technique in asynchronous environments. This paper proposes design and implementation of a novel quantum logic gate (QLG) code, with code construction algorithm generated without following any code mapping procedures for SAC system. The proposed code has a unitary matrices property with maximum overlap of one chip for various clients and no overlaps in spectra for the rest of the subscribers. Results indicate that a single algorithm produces the same length increment for codes with weight greater than two and follows the same signal to noise ratio (SNR) and bit error rate (BER) calculations for a higher number of users. This paper further examines the performance of a QLG code based SAC-OCDMA system with NAND and direct detection techniques. BER analysis was carried out for the proposed code and results were compared with existing MDW, RD and GMP codes. We demonstrate that the QLG code based system performs better in terms of cardinality, which is followed by improved BER. Numerical analysis reveals that for error free transmission (10-9), the suggested code supports approximately 170 users with code weight 4. Our results also conclude that the proposed code provides improvement in the code construction, cross-correlation and minimization of noises.

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Heteroepitaxial Structure of ZnO Films Deposited on Graphene, $SiO_2$ and Si Substrates

  • Pak, Sang-Woo;Cho, Seong-Gook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.309-309
    • /
    • 2012
  • Heteroepitaxial growth remains as one of the continuously growing interests, because the heterogeneous crystallization on different substrates is a common feature in the fabrication processes of many semiconductor materials and devices, such as molecular beam epitaxy, pulsed laser deposition, sputtering, chemical bath deposition, chemical vapor deposition, hydrothermal synthesis, vapor phase transport and so on [1,2]. By using the R.F. sputtering system, ZnO thin films were deposited on graphene 4 and 6 mono layers, which is grown on 400 nm and 600 nm $SiO_2$ substrates, respectively. The ZnO thin layer was deposited at various temperatures by using a ZnO target. In this experimental, the working power and pressure were $3{\times}10^{-3}$ Torr and 50 W, respectively. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen and argon gas flows were controlled around 5 and 10 sccm by using a mass flow controller system, respectively. The structural properties of the samples were analyzed by XRD measurement. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system. The surface morphologies were observed using field emission scanning electron microscope (FE-SEM).

  • PDF

The Phase-sensitivity of a Mach-Zehnder Interferometer for Coherent Light

  • Shin, Jong-Tae;Kim, Heo-Noh;Park, Goo-Dong;Kim, Tae-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • We have studied the sensitivity of four different phase shift measurement schemes with a Mach-Zehnder interferometer. The input light is considered to be in a coherent state and the detectors are assumed to be ideal with the quantum efficiency of unity. It is shown by direct calculation of the operators corresponding to the measurement schemes that the uncertainty of the phase-shift measurement is limited to the classical one $\frac{1}{\sqrt{m}}$(m is the average number of the photons in the input state) regardless of the phase-shift measurement schemes.

Effect of Open Channels on the Isolation of Overlapping Resonances in the Uniformly Perturbed Rydberg Systems Studied by Multichannel Quantum Defect Theory

  • Lee, Chun-Woo;Kim, Jeong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1519-1526
    • /
    • 2011
  • A previous study (Lee, C. W. J. Phys. B 2010, 43, 175002) that isolated the overlapping resonances in the photoionization spectra using multichannel quantum defect theory (MQDT) in systems involving a single open channel was extended to manage many open channels when the closed channels are degenerate. The theory was applied to the dipole allowed J = 1$^{\circ}$ spectra from the ground state with excitation energies lying between the lowest ionization thresholds for rare gas atoms, Ar, Kr, and Xe, and also for group IV elements, Ge, Sn and Pb.

The Lecomte-Ueda Transformation and Resonance Structure in the Multichannel Quantum Defect Theory for the Two Open and One Closed Channel System

  • Lee, Chun-Woo;Kim, Ji-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1560-1567
    • /
    • 2002
  • The transformation devised by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to analyze partial photofragmentation cross section formulas in MQDT analogous to Fano's resonance formula obtained in the previous work for the system involving two open and one closed channels. Detailed comparison of the MQDT results with the configuration mixing (CM) ones is made. Resonance structures and their geometrical relations in the MQDT formulation are revealed and classified by combining Lecomte and Ueda's theory with the geometrical method devised to study the coupling between background and resonance scatterings.

Investigation on Terahertz Generation by GaP Ridge Waveguide Based on Cascaded Difference Frequency Generation

  • Li, Zhongyang;Zhong, Kai;Bing, Pibin;Yuan, Sheng;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.169-173
    • /
    • 2016
  • Terahertz (THz) generation by a GaP ridge waveguide with a collinear modal phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes interaction processes and the cascaded anti-Stokes interaction processes are investigated from coupled wave equations. THz intensities and quantum conversion efficiency are calculated. Compared with non-cascaded DFG processes, THz intensities from 11-order cascaded DFG processes are increased to 5.48. The quantum conversion efficiency of 177.9% in cascaded processes can be realized, exceeding the Manley-Rowe limit.