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We have studied the sensitivity of four different phase shift measurement schemes with a Mach-
Zehnder interferometer. The input light is considered to be in a coherent state and the detectors
are assumed to be ideal with the quantum efficiency of unity. It is shown by direct calculation of
the operators corresponding to the measurement schemes that the uncertainty of the phase-shift

measurement is limited to the classical one 7=

(m is the average number of the photons in the

input state) regardless of the phase-shift measurement schemes.

I. INTRODUCTION

Precise measurement of the phase shift (or phase dif-
ference) has been an important issue for both theoreti-
cal and experimental optics. One of the main practical
reasons is its application to gravitational wave detec-
tion. In a conventional interferometry experiment us-
ing a Michelson interferometer, coherent light from a
laser is fed into the input port. The beam splitter splits
light beam into two beams which propagate along dif-
ferent paths. A phase shift, 8, is induced between the
two paths when the two beams are combined and inter-
fere with each other at the same beam splitter. A phase
shift is determined by measuring the photon number
at the output. In this case one has a phase sensitivity
of the classical limit, LN, where N is the total number
of photons during the measurement time [1].

Much effort has been focused on achieving the phase-
sensitivity of the Heisenberg limit, 1/N. It has been
believed that the fluctuation in the input light is the
main cause of the classical limit of the sensitivity in
the interferometer. An input light field prepared in
special quantum states without (or with much less)
fluctuations was studied as a potential source of the
quantum limit in the literature [2-7]. Some nonclassi-
cal light such as a squeezed state, Fock-state light has
been proposed to beat the limit {2,5]. A recent study
showed that the sensitivity of a Mach-Zehnder interfer-
ometer depends on measurement scheme of the phase
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shift even for the Fock-state light input [8,9]. Accord-
ing to the study, the measurement of one output or
half the difference of two outputs does not give any in-
formation about the phase shift, while the ccincidence
detection of two outputs results in the sensitivity at
the Heisenberg limit [10].

In the following we report on the sensitivity of vari-
ous measurement schemes for the coherent light inputs
of a Mach-Zehnder interferometer. Suppose that there
is an operator M representing a measurement scheme
which can be realized by a certain physical appara-
tus. All measurements are performed on one or both
of the two outputs of the Mach-Zehnder interferometer.
We are only interested in a few measurement schemes
which are most common or easily available. The detec-
tion schemes to be considered are the measurement of
one output photon number, M; which is the detection
for the 2nd-order interference; the measurement of the
half the difference of two output photon numbers, M3 ;
the measurement of the square of half the difference of
two photon numbers, M3; and the measurement of the
coincidence detection of the two output photons which
represents the 4th-order interference, Mjy.

The purpose of this study is to theoretically inves-
tigate the sensitivities of a Mach-Zehnder interferom-
eter for the different measurement schemes with the
ideal detectors when coherent light is assumed as an
input. The basic theory of SU(2) Lie group for a Mach-
Zehnder interferometer is presented in Section II. In
Section IIT we calculate the mean square fluctuation of
the phase-shift 8 of each detection scheme, (A8)Z, for
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the coherent light |y, aa >. Discussion and conclusion
are presented in Section IV.

II. THE PHASE-SENSITIVITY OF SU(2)
INTERFEROMETERS

We consider an experimental setup shown in Fig.1,
in which two lossless 50/50 beam splitters, BS1 and
BS2, are used to form a Mach-Zehnder interferome-
ter. Photon annihilation operators @z and a4 for the
modes after BS1 and BS2 can be expressed in terms of
the input mode operators d; and ds, which satisfy the

commutation relations [ai,a;-"] =dij, fori,j=1,2, as

Gy = —a, + —=ds,
3 \/-2— 1 5 2

b= iy + —=a o)
4 \/—é 1 \/5 2.

If we assign the overall phases 63 and 64 for two
paths, two output annihilation operators @s and ag are
given by

A . 1.
as = \—;—_2_0,36103 + ECLMB'B‘
1 ca s g . a s
=3 [(—dl + za2)e“93 +(n + mz)ew‘] ,
. 1, A
be = ﬁage’oe‘ + 71_5a4e’9“

[N

[(4ay + G2)e™®] + % [(fa: — a2)e’™].  (2)

For the input states | ¢; > for mode 1 and | ¢2 > for
mode 2, we have expectation values of output photon
numbers as

<y > =< ¢, 02 | 67 s | b1, 02 >,
<fg> =< 1,00 | aFas | d1, 42 > (3)

measured with detectors D; and D3, respectively.
When we define the phase shift, §, between two paths

FIG. 1. The schematic diagram of a Mach-Zehnder in-
terferometer.

as 04 — 63, we get

- 1, . .
Jz,out = 5("6 - ns)

= —(sin B)J; + (cosﬁ)jz, (4)

where J;,J, are defined as %(afaz + ajal) and
2(aTay — af az), respectively.

< jz,out >= —sinf < ¢h¢2 | j:v | ¢1,¢2 >
+cos < ¢1, 2 | I, | 61,02 >, (5)

in the Heisenberg picture.

Let a Hermitian operator M represent an operator
corresponding to a specific detection scheme. The ex-
pectation value and variance of the operator Mis given
by

<M >= < ¢1, 62| Mout)b1, b2 >,
(AM)? = < ¢y,¢2 | Mg‘li.t | 1,02 >
— < 1,02 | Mowt | 61,02 > . (6)

Then the mean-square noise of 8 is given by

(AM)?

(AO)%,, = [a_<81_g!_>] 2

(7)

The detection M determines the relative phase shift 8
with a phase sensitivity of A8, which is the root-mean-
square fluctuation of 4.

III. MEASUREMENTS WITH COHERENT
LIGHT INPUTS

A. Measurement of the photon number of one out-
put, M;.

In this section we assume the inputs of the Mach-
Zehnder interferometer, |@1, ¢2 >, are in pure coherent
states |ay,as >. In case of the measurement of the
photon number of one output [Fig.2(a)], the number
operator fi5 is given by Eq.(2) as

1
fig = &;&5 = E[ﬁl(l — c0s8) + fiz(1l + cosf)
+ (af a2 + a3 a,) sin 6], (8)

where the photon number operators 7, and fi2 repre-
sent Gj @, and a7 as, respectively.

From the relationship of the operators a, a* and the
coherent state | a >

ila> =ala>,
<al|lat=a" <al,
<ala> =1, (9)
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the expectation value of 7i5, can be obtained as

1
<oy, | fs | a,ap >= 3 [laa|?(1 — cosf) + laz|2(1 + cos8) + (afaz + aja;) sinb)] . (10)

The expectation value of the A2 is given by

<an, oz | hshs | ar, az> = }1{[(1 — cos®)(jau ]t + | ]?) + 2(1 — cos6)]as [Pz ?
+ (14 cos8)?(Jaz|* + |az]?) ]
+ sin8(1 — cosf) [} ez + 2|on*(afoz + 0n03) + ar03)
+ sin8(1 + cos ) [2laz|*(e103) + 03 + ajas)
+ sin® 4 [2|oq *|oz|? + lar|? + |az|? + a?a3? + of?aj]} (11)

Then the variance of operator il becomes

1 p . * *
(Ang)? = = [|al|2 + |012|2 + cost9(|012|Z — |a1]?) + sinf(afas + alaz)] (12)

2

and the square of the phase shift uncertainty (A6)?
with the measurement of fi5 becomes

(A0}, =

L [lea]? + |oz|? + cos8(|az|* = |aa|*) + sinf(ajaz + aya3)]

FIG. 2. The schematic diagram of four different mea-
surement schemes. (a) M; scheme-measurement of one
output, (b) M, scheme-measurement of half the differ-
ence between two outputs, (¢) M3 scheme-measurement the
square of half the difference between two outputs, (d) M4
scheme-the coincidence measurement of two outputs.

using Eq.(12). If one of two inputs is in the vacuum
state, i.e. az = 0 and oy = a(|al? >> 1), the expecta-
tion value and the square of the phase-shift uncertainty
(AB)? are given by

< a,0|fis|a, 0 >= %Ialz(l - cos8) (14)

2

2 _
(A0)hs, = |a|2(1 + cos @)

(15)

Then the phase-sensitivity of the measurement with fi5

, 13
Lsin (|1 |2 — |@2]?)? + cos? 8(ataz + ajar)? + 2sinfcosf(jon |? — |ez|*)(afez + asar)] (13)
|7is
1 1
Abpg, = — = —— 16
o] = Vim 19

for § = 0, where m is the average photon number of the
coherent input. As @ approaches m, A goes to infinity.
It means that we cannot obtain any information about
the relative phase-shift if it is 180°.

In case of two intense, identical coherent inputs a; =
az = af|aj? >> 1), the expectation value and variance
are given by

< a,alfis|a, a >= |a|*(1 + sin6) (17)

1
(A0)3s, = a1 —sn)’ (18)

The uncertainty of 8 becomes

1 1

for # = 0. It increases to infinity at § = Z. Similar to
the case of one coherent light input, Aé depends on the
phase shift @ of the interferometer and its minimum
value is given by the average photon number of the
inputs.

B. Measurement of f,, M,

In this measurement scheme [Fig.2(b)], we measure
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the phase shift § by the detection of J,, which is half
the diﬁ‘ergnce between the photon numbers of two out-
puts. < J; out > can be easily calculated by Eq.(5) for

1 .
+-2-(|oq|2 — |az|?) cos¥, (20)

the two mode coherent inputs, |1, as >, as

A 1 .
< Jzout >= "'2-(01;&2 + aja;)sing

while

<o > = %(2|a1|2|a2|2 +|a1|* + |ea)? + 020} + a3%0?) sin? 6 — %(a;ag +a103)(|a1* — |a|?) sin 6 cos 6
+ 30l + laal* + s + [agf? — 2la Plas]?) cos? . (21)
Then the variance of jz becomes
(ALY = J(enf? + fosf?). (22)
Therefore one easily find the phase sensitivity as
(26)37, = (lea* + az/?)
x[(afez + aza1)? cos® 6 + (Jas|® — |o2|?)? sin? 8 + 2(|as |* — |ez|?)(atas + ajay) sin 6 cos 67t (23)

If one input is in the vacuum state, i.e.,a; = a, as =0
we have

1

—_——. 24
|a|? sin® § (24)

(A8)3s, =

It means that the uncertainty of the phase shift is

1

Abpyy = ———.
Ot la[[sin 6]

(25)
Af has the minimum value - at § = Z, but it in-
creases as 6 decreases from 3 to 0. On the other hand,

if we have two identical coherent inputs (a1 = @y = a),
the square of the phase shift uncertainty is given by

1
NG, = ——— . 2
(A0, 2|a)? cos? (26)
The minimum phase-shift uncertainty is
11
Abpp, = —=— 27
" = 75Tl &

at 6 = 0. As before, A# also depends on # but it differs
by the factor of 1/ V2 from the M, case for the same
input.

For both kinds of input states, this measurement
scheme can have phase sensitivity corresponding to the

Blf
B2§

< 01,02Ij£|01,a2 >,
< alaa2|‘]2|a1va2 >,

. - « 1
classical limit T

C. Measurement of J2, M;

In this scheme [Fig.2(c)], the relative phase shift 6
is measured by the square of J;. < JZ,,, > is already
given by Eq.(21) as

< jzz,out >= A; sin® 6 + A, sinfcosf + Az cos? 6,

(28)
where coefficient A’s are defined as follows.
A=< al,a2|jz2|a1,ag >,
Ay =< al,agl(szx + jzjz)lal,az >,
A3 =< a1,02|J12|(11,(12 > . (29)

The expectation value of J*

2 out fOT two coherent inputs
|aa, aa > is given by

< jf,out >= B; sin? 8 + B, cos* 8 + Bs sin® 6 cos? §
+Bysin® fcosf + Bssinfcos® 6,  (30)

where coeflicient B’s are defined as follows.

B3 =< al,azl [(jzjz + jzjz)z + jsz + jzzjg] |a1,a2 >,
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By = - <an,anf [J2(0ads +Judi) + (e + Bod) 2] a0 >,

Bs = - < a1, a [jf(jsz + Jode) + (Fuds + j,J;)ff] a1, > . (31)
The variance of Jj2,,, is given by

(AJE)Z =< al,a2|jf,out|a1,ag > —-< (¥1,C!2'J;2,outlal,az >?
= (By — A?)sin* 8 + (By — A?) cos? @ + (B3 — 24, A3 — A2)sin? O cos® 6
+(By — 241 A;)sin® @ cos@ + (Bs — 2A2A3) sin 6 cos® 8, (32)

this lead us to the expression of (Aé?)f\,,S as

AJ?)2
(@, = =2
6<j3 nu¢>
.—5.0__—
= [(By — A})sin* 8 + (B; — A2) cos* 8 + (B3 — 24; A3 — A})sin® f cos® 6
+(By — 24, A;) sin* §cos§ + (Bs — 242 A3) sin cos® 6]
[4(A, — A3)? sin? 0 cos? 8 + 4A% cos* 6 + A3 — 4A4% cos® §
—4A,(A, — A3)sinfcosh — 845(A; — A3)sinfcos® 6] L. (33)
Let us consider two special input cases. When we have ( The measurement of the phase-shift 4 is based on the
only one coherent input (a; = a, ag =0, [af® >> 1), coincidence photon detection at the two outputs of the
the coefficient By is zero. Then the denominator in interferometer in this scheme [Fig.2(d)]. The operator
Eq.(33) is 7, which is the average of two input photon numbers,
A 9 is defined as
6 < Jz2 out > 1 8 .2 2 1
[——80———— = Zla‘ sin® # cos” 6. (34) A = E(a‘l al + &;az) (38)
From these the phase sensitivity can be obtained as fiy and fip can be expressed in terms of 7 and J, as
(2002, = Hal® cos® 8 + +|al|® sin® 6 cos? n =ditd =a+ J,,
3 1|a|® sin® @ cos? 6 fpa=dyTdy =0 — J,. (39)
1 1 -
= W SnZa’ (35) The coincidence detection N, of the photons at two

output ports is given by
For the case of two identical coherent inputs (a; = ) L \
a2 = a, |2 >> 1), A, is also zero and the denomi- Ne =fistg = 0" — J3 st (40)
nator in Eq.(33) becomes
- 2
<2 > s
[———559—%——] = 4|a|®sin?  cos? 4. (36) (A, J;]=0 (41)

is used. Then the expectation of the coincidence mea-

Therefore Af is obtained as surement for the coherent inputs, |a1, a2 >, is obtained

5 2|a® sin 8 + 2|a|® sin® 8 cos? § as
(Ag)Ma = 4| 8 ainn2 P’ 29 N
. 1a| sin” § cos < ay,a|Nelay, s > = Cy — Casin® 8 — C3 cos® @
= Wc—oéz—g. (37) + C4 Sinocos 0, (42)

For both cases the phase sensitivity of the phase-shift where the coefficient C’s are defined as

is bounded by the classical limit 7‘; Ci = < o, a9y, a3 >
1= ) ) 3

- 72
Cr =< al,azlleal,ag >,
D. The coincidence detection, M, Cs = < ay, 2|2, a2 >,
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Ci=< al,agl(fzjz + jzjz)lal,az >, (43)

The expectation value of N2 is given by

< ay,00|N¥ay, a2 > = Dy — 2Dy sin® 6 — 2D5 cos® § + 2(D3 + Dy) sinf cosf + B, sin* 6
+ By cos* 6 + Bs sin? 6 cos® 6 + By sin® 6 cos + Bs sin 8 cos® 6, (44)

where the coefficient D’s are defined as

— ~4

D, =< a3, |t |ar, a2 >,
— ~2 72

Dy =< al,azln leal,ag >,
_ .25 3

D3 =< al,azln J;,;leal,az >,

Dy=< al,a2|ﬁ2jzjz|a1,a2 >,
Dy =< al,a2|ﬁ2jf|a1,a2 >. (45)

Then the variance of the coincidence measurement is
given by

(AN,.)? = (D — C?) + (—2D; + 2C1C,) sin? @ + (201 C3 — 2Ds) cos* §
+2[(Ds + D4) — C1C4]sinfcosd + (By — C3)sin* 8
+(Bz — C2) cos* 8 + (B3 ~ 2C2C3 — C?) sin? f cos® @
+ (B4 + 2C2C4) sin® @ cos § + (Bs + 2C3Cy) sin 6 cos® 0 (46)

and the square of the phase-shift uncertainty, Af, be-
comes

(A8)%;, = [(D1 — C2) + (2D, + C1Ca) sin® § + (2C1C3 ~ 2Ds) cos® 6 + 2[(Ds + Dy) — C1Cy) sin b cos 8
+(By — C2)sin* 8 + (By — C2) cos* 8 + (Bz — 2C2C3 ~ C?) sin’ § cos? §)
[4(Cs — C3)? sin? B cos? 8 + C7 cos* 6 + C2sin' §
+4C4(C3 — C3) sinf cos® 8 — 2C2 cos? Osin § — 4C4(C3 — Cs) sin® Hcos ]! (47)

We now consider the two special input cases. If we
have only one intense coherent input (a; = a, az =
0, |a|> >> 1) for the coincidence measurement. The
denominator in Eq.(49) is reduced to

8 < N, >
o6

2
] = %Ia[s sin? § cos? 4. (48)

Those generate phase sensitivity as

1

2 _
(A0, = || cos2 §°

(49)

For the case of two intense, identical coherent light
inputs (@1 = o = @, |a|? >> 1), the variance of the
coincidence measurement and the square of the deriva-
tive of the coincidence measurement with respect to the
phase-shift # can be approximated as

(AN,)? = 2|a|® — 4|e/|®sin?6 + 2|8 sin* 8
+2|a|® sin?  cos® 6 (50)

and

N 2
[Qfai;’fl] = 4ja|® sin? § cos? 6, (51)

—

respectively.
The mean-square fluctuation of 8 then becomes
(863, = = (52)
Ms ™ 9)la|?sin® 6

The phase shift measurement by coincidence detec-
tion, therefore, shows #-dependent resolutions that is
also proportional to lm corresponding to the classi-
cal limit. The case of two mode coherent input has

the best phase shift resolution of —4— at the % phase

V2|e|

shift, while the best resolutions %T is achieved at zero
phase shift for the case of one coherent light input.

The results of this section show that the phase sen-
sitivity in a Mach-Zehnder interferometer is limited by
the classical limit \/IT’ irrespective of the measurement
schemes for the coherent light inputs. But it depends
on 8, the value of the phase shift, in all cases of the
measurements.

IV. DISCUSSION AND CONCLUSION

We have examined the sensitivity of four different
measurement schemes of a Mach-Zehnder interferome-
ter by direct calculation of operators representing some
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TABLE 1. (A6)? in a Mach-Zehnder interferometer for the special coherent state inputs.

Coherent state light input |a;, ap)
Scheme ar =a,a =0 a =02 =a
la)? > 1 lal? > 1
M 2 1
1 [aZ(1+cos 8) laP(xl—sino)
M. 1
2 e[ZsinZ 8 2la]Z cos? @
1 1
My [alZsin?8 2[a] cos2 8
1 1
M, [alZcos2 @ 2alZsin2d

measurement schemes for the coherent light as an input
light in an ideal situation with the quantum efficiency
of 1. The phase sensitivity for some special cases are
presented in Table 1. The accuracy of interferometric
measurements for conventional coherent light input is
bounded by the classical limit for any kind of measure-
ment scheme. When we consider the nonideal efficiency
of detectors, the phase sensitivity of the interferome-
ter can be worse than 71—7;”— This calculation shows an
agreement with Paris’s analysis of the sensitivity for
coherent light input {1]. On the other hand,the study
of the Mach-Zehnder interferometer for the Fock-state
light input shows that the phase sensitivity depends
on the measurement schemes, in which the accuracy of
the M; and M, schemes have the classical limit,while
those of M3 and My schemes can reach the Heisenberg
limit [10].

The phase sensitivity is also dependent on the choice
of the phase shift, 8, at which we set up the interfer-
ometer, as shown in Table 1. The dependence of the
phase sensitivity on the phase shift is different from
those of Fock-state cases, in which the phase sensitiv-
ity has the term of tan?# in Ms and My schemes. It

means that the best accuracy can be achieved in zero
phase shift. For coherent light input,on the other hand,
the minimum uncertainties are at different phase shifts
0 according to the measurement scheme.

The calculation of the phase sensitivity for coherent
light input shows that we can measure the signals in
these 4 measurement schemes. This is somewhat differ-
ent from Mandel’s experiment {11,12], which had sig-
nals measured at one output port, M; in our case, but
didn’t have the coincidence measurement, M,, with
mutually coherent light from a laser. Here we assumed
pure coherent light as an input with long coherence
time and the resolution of the detection system is very
short compared with the coherence time of the input
light.
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APPENDIX A: THE CALCULATION OF THE COEFFICIENTS A’S, B’S, C’S, D'S.

Using the commutation relation [a;, &j] = §;; for 4,5 = 1,2, we can calculate all the coefficients A’s, B’s, C’s, D’s

for the coherent state input |a;,az >.
A=< 011,012|jz2|041,az >

... adn N g n ot
=< al,a2|z(af'a1 - a;az)(afral - a'2"a2)|a1,a2 >

1 e R o A

=1 < aq,aql(@faraf ar — afaagd as — af a6l ay + @426 ag)lar, a2 >
1 A N T N A

=7 < ay, aol(@fatarar + afay + atad agas + af ay — 2af arad az)|an, o >
i

= Z(|0¢1|4 + loal* = 2]on *loz|® + |oa|* + |az?), (A1)

PN A 1
As =< a1, 0|(JJy + Jod2)|on, a0 >= §(|a1|2 — |az|®) (o} oz + a1 03), (A2)

A3z

A 1
<oy, @)y, >= Z(2|011|2|C¥2|2 + a1 + |azf? + of®ad + a?a3?). (A3)
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By =< a1, |/ ay, a0 >
1
= E(Iall2 + a2l + 4a;‘2a§ + 3lay |t + 14|a; 2| az|?

+ 3as|* + 4a2a3’® + 2|az[*afas + 6a; |2at?e? + 4|2 at?al
+ 12]ay *|og)t + 13|a1|4|a2|2 + 6laz|?a?as’? 4 3|y |Palas?
+ 4]y |2 |t )? ajag + af a2 + 6|a1| |012|4 + 3jay |2 |a2|2a1 al

+ |oa||az*afaz + 4]ay 2 laz|?a?as® + adag?),

By =< al,agljflal,ag >
1
= E(|al|2 +lazf? = 2la1Plael® + T |[* + T[ea|* — 6]a|*]az|? — 6lay [2]as|?

+ 6]ay|® + 6|az|® — 3|0q|6|012|2 + 6|a |*|an |t — |o;1|6|01;)|2 — 4ou |*|aa|® + |ar|® + |az]®),

B; = < ag,a,| [(jzjz + Jo e )? +J?J2-§-J2 ]Ial,ag >,

1 * *
= —1—6(2101|2 + 2'(12'2 + 8&1203 + 6|a1l4 et 2|a1|2|a2|2 - |a2|2a12

+ 6laz|! + 8a%as? + 2|ay?atal + 2|az|2at?ad + 3|y |*|ae)?
+ 41| + |y | g |? - dloq|?alal? - 3lazl?at?ad - 3o |?|as]t + la2|® + 5laq|?a2al?),

By = — < aj,as] [jf(.fzjz + jzjz) + (JAIJAZ + jzjz)jﬁ] a1, >,

1
- -—§(|a1|4 +a}?ad — 4oy Plasl? - 2es)?atas — 5|az|?at?al

+ 3lau|?a®ad + 3larl*afas + 3lastanal — T|ay|as|t + 4l |az)?af oy
+ 2|y |2 la2|2a1a§ — 4|az|*afar ~ |agl® — 5lag|taral + 3las)t|as)?

+ 2|a1|2a1 a2 — 2|a; |? |a2|4a1a2 + 2|a1|4|a2|2afa2 - 2|a2]2a1‘3ag
+ 2|y |* |012|20410e2 - 2|a2|2a1a23 + Iallza?aga - 2[a1|2|a2| ool

+ 2|lan)?|ezl?a’a) — 20on Plazl® + fon)*|ea]* — 2|as|*a} 20}

+ 2[a1|4|a2|2a1a2 - lag|? |a2[4a1a2 + 2|y |* la2|2a1a2 + a1 }? |a212afa;2).

« 1
C1 =< a1, mfi®|an, a >= Z(|011|2 +laz*)(len f? + |ezf® + 1),

—

Cy =< a1, 2|20y, ap >= —(2|a1| |laal® + |1 ]? + |e2|? + a}a + a?a3?),
. 1
Cs =< a1, ||y, 0y >= Z(lall4 + lagl* = 2Ja1|Plaaf? ~ |1 |? + |az)?),

s s = 1
Cy =< aq,a3|Jpd; + JoJo|ag, a0 >= §(|011|2 — |ea) (et + aday).

D

=< al,a2|ﬁ2|a1,a2 >

—

1
= ‘1—6(|a1l2 + |a2|2 + 7'0(1,4 + 7|(12|4 + 16|a1|2|a2|2 + |01|6 + 6|a2|6

+ 18Ja1 [*|az|* + 18|ar|*|oz[® + 4fan|*|az|* + 4ar|®laz|? + 4lar||az|® + |oa [® + |aa?,

.2 32
Dy =< ay,a|0%J; oy, an >

(A4)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)
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= (|a1l2 + fo2f? + 3o |t + 18a1a 24 4a{2a§ + 3laz|* + 13|a114|a2(2

+ |a1|2a1 a2 + |ogPadal? + Slan)?at?al + 5lag|ta?

+ 4|a1|4|a2|4

+ 4logPa?al? + 13]a |?|ag |t + 2lea |*|az)?atas + 2|a1|4|a2|2a1a§

+ lon® + 21 |®laz]? + 4lon [Pai?
+ 2|1 Ples|?at’ad + |az|® + 2jen*|aa|® + |ez|ta)

PPN
=< oy, a2|R*J ] a1, a0 >
1

Ds

o + | I“a1 ol + lcvl
%0} + |az|*afas?),

[oda;”

(A13)

= Ig(oan — olas + 5|atParel + |on [Patan — Tlaglfatas

~ lea P05 + 2lan*la|® + o

— la1[Flezl*afaz + for[*|aaParaf — |1 [*az|*onas

+ | |%afag + g |fanal —

Dy =< al,a2|ﬁ2Jsz|a1,az >

1
= 16102 —

laz|banal + |ay|*|az|?afas),

o) + Tl |?afan ~ 7|a2|2a1a§ + |a1|feqaf -

la12at’a2 + 6lai[*aaf — 6laz]tatas

4|agl4a1a2 + 2|a1| |o¢2|2 + 3|a1|2041 a2 - 2|a1| |a2| ajoy

(A14)

| *af arp

+ 6las|*ajas + 2|a1|2|a2|2a’{a2 + 4|a1|4a1a; - 4|a2[‘1a1'a2

- 2l *|ag? 103 - Blan|tenag + | |*|azl?af e — | *|es| i az

+ |(11 |4|a2|2a1a§

— laz|®ajas — |az|®ana3),

=< al,azlfzzjflal,az >

1
= 1—6-(‘(11‘2 + |a2|2 + 7‘(11‘4 + 7!02'4 - 2|a1|2|a2|2 + 6](11]6 + 6|02|6

- 2|y Plaz]* = 2laa|*ae)? + o |® + |oz|® -
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