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The transformation devised by Lecomte and Ueda for the study of resonance structures in the multichamel
quantum deleet theory (MQDT) s used 1o analyze partial photolragmentation cross scetion formulas in MQDT
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Introduction

Though multichannel quantum defect theory (MQDT) is
onc of the powerful theories for resonances in (hat it allows
us 1o describe complex spectra including both bound and
continuum regions with only a [ew paramciers. resonance
structurcs arc nol transparcntly identificd in its formulation
as rcsonances arc treated indirectly.' In order (o identify
resonance tenms. special treatment is needed as Giusti-Suzor
and Fano did for the (wo channcl system by (he phasce
renormalization.® They noticed that the usual Lu-Fano plot
often obscurcs the symmetry of the cunve in it which is
apparcnl when the plot is exiended (o infinity. The symmetry
can be brought into the MQDT formulation by using
the (cchniques first considered in Ref. [4] which move the
origin of (he plot to the ¢enter of symmetry by the use of
basc pair whosc phasc is shificd from that of the basc pair
(@) by

(/- @) — (fcosmy — g sinmp. g cosap + f'sinzy). (1)

By (his phasc renormalization. (he diagonal clements of short-
range reaclance matrices A become zero and the resonance
structures arc scparated rom the background in two channcl
svsiems (Dubau and Scaton also oblained the same results as
Giusti-Suzor and Fano's oncs from a diffcrent approacl).
The generalizations of their method (o systems imvolving
arbitrary numbcers of open and closed channels were done
by Cooke and Cromer.® Lecomie.” Ueda® Giusti-Suzor and
Lefcbvre-Brion.” Wintgen and Fridrich.! and Colen.!! Cooke
and Cromer.'” Lecomice. and Ucda showed that. for such
general systems. making the diagonal clements of reactance
matrices A #zcro can onlv be achicved with the modification
to (he (ransformation so that it performs an orthogonal
transformation of basis functions besides a phase renormal-
ization, We will call this transformation the Lecomic-Ucda
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transformation hercinafter. Using this transformation. Lecomic
found the best paramcters (o describe total cross scctions
shorn of the background part for autoionization spectra for
general systems, Uceda derived total cross scction formulas
analogous (o Fano's rcsonance formula for some cascs
including onc closcd and an arbitrary number of open
channcls. Giusti-suzor and Lefcbvre-Brion” and Winigen
and Fridrich' did the detailed study for the system involving
two closcd and onc open channcls and Cohen'! for the
system imolving (wo closed and two open channcls, The
present paper deals with the system imvolving two open and
onc closcd channcls and is thus morc restrictive than the
previous work in this sense. But the present work obtained
scyeral results which are absent or not dealt in the other
pcople’s work, It obtainced the partial cross scction formulas
for photolragmentation processes analogous to Fano's re-
sonance one. which is not trivial since it is generally believed
that final statc distributions described by partial cross section
formulas contain dctailed picees of information sensilive to
some features of dynamical couplings. The present paper
also succeeded in obtaining the complelc relations between
MQDT and configuration mixing (CM)'*!* formulas for (his
concrete examples. the general features of which were studicd
before by Fano and Mics.! ™ We achicved this by refor-
mulating MQDT into the form of the CM thcory using
Giusti-Suzor and Fano’s mcthod so that the Lu-Fano plot
becomes symmctrical. But (he short-range reaclance maltrix
A obtained in this way in Ref, [20] was not the kind of form
considered by Giusti-Suzor and Fano in that its diagonal
clements arc not #cro. Tt means (hat intra- and inicr<hannel-
block couplings arc not fully scparated yet. Making diagonal
clements of & vcro can be done by the method prescribed by
Lecomte.” In the present paper. his method is coupled with
the geometrical method developed in Ref. [21] for studying
the coupling between the background and resonance
scatterings so that the hicrarchical resonance structures are
fully investigated and the MQDT rcformulation is made to
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match fully with the CM theory.

In the following section. we will summarize the trans-
formation intro- duced by Lecomte and Ueda with some
additions needed for the present work. In the next sectioi,
we consider the short-range reactance matrices in various
channel basis wavefunctions and iivestigates the resonance
structures using the Lecomte-Ueda transformation. After
that. the photofragimentation cross sections and relations
between those and the CM ones is derived. Finally. the
sumumary and discussion is given in Section 3.

The Lecomte-Ueda Transformation

We mayv describe the Lecomte-Ueda transformation using
either standing-wave channel basis functions or incoming-
wave channel basis functions. Both descriptions have their
own advantages. The former is suitable for the study of the
reactance matrix A which provides much simpler description
than the scattering matrix. The latter, on the other hand. is
suitable for the description of the photofragmentation cross
sections. We will give both descriptions.

A, The Lecomte-Ueda Transformation in Terms of
Standing Waves. Lecomte and Ueda considered the trans-
formation in which the basis sets are not omly phase
renormalized but also transforimed by an orthogonal matrix
17" Let us denote the regular and irregular pair (@, ;) at
R 2 Ry as (8.8, The Lecomte-Ueda transformation
changes this pair to d@finéd hs

8, = 3811, cosmu, — 611, sinz).
!

8 = (811" sinzu, + 611, cosmu,) )
!

so that the standing-wave channel basis functions

¥.= 38,8, - OK,).R2R, 3

are transformed to the new ones

W, =368, -0'K" ). RzR,. €Y
7

@, in Eqs. (2) and (3) is the wavefunction describing all the
motions in the i-th channel except for the one along the
coordinate & in which fragmentation takes place and R, is
the value of R bevond which channels are decoupled. The
transformation relation for the reactance matrix A is given in
matrix form by

K= (R singy + cosmuy (1T K I cos i — sinzy)
%)
and the one for the wavefunctions by

W= S WL (cosmu — sinmuK )], ©)
;

If JI"is the unit matrix. the transformation is reduced to the
one by Giusti-suzor and Fano. On the other hand. if the
phase renormalization is not done. i.e.. t4; = 0 the reactance
matrix and wavefunctions transform in matrix form as
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K=K
V=Wl (7)

Besides the reactance matrix A. another (vpe of reactance
matrix xis considered by Lecomte. I we consider the short-
range scaticring matrix .S corresponding (0 A it is related to
KN as

S=(1—ify1+iky . (8)

where exp(—2i9) instcad of exp(2/8) is used for § with the
consequence of i's being replaced by —/ from the usual
formula of S in Eq. (8) as our intcrests are in photo-
fragmentation. Let us consider the partitioning of S

A0 00
S8

Al L
STS

with indices ¢ for closed channels and o for open chamnels.
The x* matrix is defined using the submatrix S as

S = 9)

SO= (=i + iy (10)

From the definition, we can express k™ in terms of the sub-
matrices of K as

Kc(rz A_cc_ ]\.w(—." + KOO) 11\.00' (a1

The & matrix is an cffective K matrix when open channgls are
not observed in photolragmentation and can altcrnatively be
obtained by sciting the cocfficicnts of outgoing waves in apen
channcls (o #cro following the prescription described in Fano's
book™ where (he cocfficicnts of incoming waves are sct 10 7¢ro
as scallcring is considered. Lecomte noticed that this k* matrix
transforms under the restriction of 11¥° = > =0 as

ce el Y e o . ¢ ey |
K= T sinap + cosmy)
% (”-cc'iTlK_c:c”<:c:cosnu4:_ simruc). (12)

Now consider the eigenchannel wavefunction ¥f/'the
physical reactance matrix K’ which can be obtained as a
superposition of \¥,” of Eq. (4) as

W)= X W/ 2088, + 3 W7, cos i (13)
kel ke

and satisfies the boundary condition at R — e as

‘Ppl - Zp(gjlajk - éi"Kjk’]Tkr-')cosé-”‘ (14)

fkhe
where P and () denote the sets of open and closed channels.
respectively. §,” the eigenphase shift for K* and i the
accumulated phase shift in the 4-th closed channel.” Now
we want to make Eq. (13) satisfv the boundary condition
(14). For that purpose. let us first consider the form of Eq.
(I3)inR = Ry
¥, = Y187, cosd,

R 1

i€
— 8/ (K" 7"c0s 8 + K" “casB 7" )n]
- 3187 cosfy

1€Q

— aj"(K’cCCOSﬁ’Z'C + K'C”Z’”COS (j.' )_,-';_7 ] . ( 1 5)
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The coefficient of the exponentially rising term of the second
sum on the right-hand side of Eq. (13) should be zero. The

closed-channel forms of 8, and hbtained from those of  f;
and g; in Ref. | 23] are given by

p ur JR—
0= Zie oy DD 1Ty cos (B + muy)
i

+ D7 TSI, + ) 1.

(R 2Ri'l)
. ", RIIA
6'=-%,., n__]é_(pill)if:“ 5 sin{ 3, + mi))
+ D, ],,‘; H';”cos(ﬁ, + )| (16)

with /;J" which arc introduccd 10 denote exp(x iR). respec-
tively. for the open channels but become exponentially de-
crcasing and rising tcrms exp(FkR). respectively. (or the
closed channels [&; = ik, = J2m {FX — I;)]. Substiluting Eq.
(16) into Eq. (13) and sciting the cocfficients of the ¢x-
poncntially rising (crm {0 zcro. we obtain

(K" + tanf;"ycos f 2" = K72 cos &' (a7

where tanf3;;” is delined as
ce c o . ]
tanB,,’ = (cosBl ““cosmu’ — sinfii ““sinzyu’)

x (sinB1““cosmu’ + cos BN ““sinzu’y . (18)
The mass m, in Eq. (16) denotes the reduced mass for the
motion along the coordinate R in the chamnel i and x; is
defined as ,52»;,(15', — £ with the energy F of the system
and the core energy /7, in the j-th channel. Comparison of the

asymptotic form of ¥ p’ given in Eq. (14) with the open
channel part of Eq. (15) yields

70 =1,
K7 cosd + K"“cosf' 7' = K'T'cos . (19
Inserting Eq. (17) into Eq. (19). we obtain
K= K% = KK + tanf,") | K7 (20)
which is different from the well-known relation
K =K - KK + lanﬁ’)"' Kl 1)

in (hat tan 8 is replaced by @il ’(18). Two rclations
become identical when 17 is the unit matrix, Notice that. in
order for W', 1o be cigenchanncls. the following relation
holds from Eq. (14):

i 1)

KT = tand’. 22)

Therefore (he meanings of (and” and s cigenvalucs and
the collection of cigemvectors of X7 still remain the same.
The cigenvalues and cigemvectors of K mayv be obtained
alicrmatively by solving the so-called compatibility cquations
given in matrix form as

(K —1an&) 7" cosd + K cos ' 7 = 0.
K72 cos& + (K + tanf3;/Yeos /2" = 0. (23)
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which are obtained from Eqs. (17). (19). and (22).

B. The Lecomte-Ueda Transformation in Terms of In-
coming Waves. When we consider the photofragmentation
cross section formulas. it is much more comenient to use
incoming-wave channel basis functions instead of standing-
wave ones. To handle incoming-wave channel basis functions.
usually the basis pair { /. /; } is used instead of {£. ¢;}. But,

,ﬂt are just exponential functions defined as exp(£ iA;R) with
k= J2m (£ - £,y and do not directly correspond to the
pair {f. gi}. (When the i-th channel becomes closed. #;
becomes ix:) 1t may therefore be a good idea to introduce

the basis pair which directly corresponds to it. Let us define
B N . + . . +
this basis pair as ¢; which is related to s

+ 1 [2m, m,

¢i =5 € f;’t
2iN 7k, (R >Ro) 24
¢i L &e_lnlf;,

T2y,

for open channcls and

o = s (2B pst v T,
L L ‘ R2R)  (23)

6 =3 fﬁ P -
' 2Nk,

for closed channcls. The relation between them is given by
¢, =—0¢;. They arc related to the basis pair {£. g.} as

0, =30 +ig).

07 =5+ ig). 26)

regardless of open- or closed-ness of channels. The phase
shill n; in Eq. (24) is the one for the base pair /; and g; for an
open channcl.

The Lecomie-Uceda transformation changes this pair {@;¢;.
@;¢; 3 into a new one. Let us denote the old pairas {67, & )
and the new one as {9’}'. ', 3. Then the relation between
two pairs is given by

. v mu
9']» = 26, e .

Ty,

0, =38 e Q7

_— . [ - . .
As II"is rcal. we have the welation 8, =-8,. Wilh this
transfonnation. the incoming-wave channel basis function

Wi = T 0976, — 9 530 R2 R, (28)
transforms into
W =S8, 8, ¢'7S,). R2R,, (29)

By inscrting Eq. (27) into (29). we find the transformation
relation between two wavefunctions as

) = g g (30)
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and the one for the short-range scattering matrices as

5= Mg ™, 3D

It may be casily checked that the relation between the
incoming-wave and standing-wave channel basis functions
1s invariant under the Lecomte-Ueda transformation. 7.e..

W= Ky (32)
!

Notice that the summations in Eqs. (28) and (29) include
closcd-channcl contributions which can grow exponentially.
The physical solutions satisfving ihc boundary conditions at
{the asy mplOllC rcgion can be obtained by the superposition
of ¥ as

z ‘P,I )_I/;‘?J_'_ z \Pil ‘_trt (3-;)

=Y _ E] ;o
lP/j - zq} & ‘-ij -
k ke ke
so that they take the following form in (he asymplolic region
) . . o
¥, - Z( ¢, 6, - S,J.’) 34)
and the coefficients of the exponentially rising terms become

zero. The incoming-wave boundary condition is satisfied
when

47 =1,
ST SN =8 (35)
which vicld he solutions
= e Py T (36)
where cxp(2if,”} denoles
o = R gpee) TR e g 37)

From the solutions (36). the physical scattering matrix is
expressed in terms of the submatrices of the short-range
scattering matrix as

REY: Mg

) PO, el & -1 2 4L "
§ = ST ey S (38)

In Appendix AL it is shown thal X7 ol Eq. (20) can be derived
from 8’ ol Eq. (38).

With the cxpansion cocfTicients obtained in Eqs. (35) and
(36). Eq. (33) can be writlen as

5 W

ke Q

2By
L)

1o
RS L Y SNy (39)

Tnserting Eqs. (A1) and (A3) in Appendix_ L. 47 of Eq. (36)
may be cxpressed in terms of (he submatrices of the short-
range reaclance matrix A as

[ . [ 7 ce -1 - 7
A7 = (1 +ik" Yanf, + &) (i +tanfy”)
x {1+ ik A'“’( 1+ K’””) . (10)

which is rather complicated. When 17 is the unit matrix,
Eq. (40) becomes simplificd as
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o _ (t(]]]‘B +!}(I(]I1ﬂ + Jcc} lA_,c;u( +f\.’““) 1 (41)

and Eq. (39) becomes

\P)I ] .{,;l J+ Z l:l,"[ )[(tdﬂﬁ +[)

ke Q

-0 -1
EHRTT) gy (42)

X (lanﬁ/ + wi%e ) A-r( (7(

It can casily be shown that similar cquations 10 Eqs. (30)

and (a 1) hold for the physical incoming wavclunctions
¥ and physical scattering matrix Sti matrix form as

i GRS S P 43)

8= g i 44)

[f the original matrix § Is symimetric. its transform given by
Eq. (44) is also symumetric when /i is real and orthogonal.
The reality of i also ensures that the transform of the
reactance matrix given by Eq. (3) is real. 7' = § implies that
the related processes are imvariant under time reversal. Thus,
with 7" real. the Lecomte-Ueda transformation conserves the
time reversal invariance. Notice that channel basis functions
cannot be nsed to describe a fragmentation ‘iﬁfpcess
when a particular channel is observed at the asymptotic
region as they are given by superpositions of fragmentation
processes. Thus channel basis functions ‘}"2._) which are
obtained from the Lecomte-Ueda transformation cannot in
general be used to calculate partial photofragmentation cross
sections. 1n this regard. wavefunctions obtained from the
fragmentation channel basis functions by the phase renor-
malization alone are different and can still be used for the
calculation of the partial cross sections. Wavefunctions
produced by the Lecomte-Ueda transformation including an
orthogonal one. however. can still be useful for other pur-
poses. They can be used to find eigenchannel basis functions
for the scattering matrix containing only a resonance con-
tribution. They can also be nsed for the calculation of the
total cross sections as Lecomte and Ueda did as channels are
not detected separately in the measurement of total cross
sections.

Before ending this section. let us briefly comment on the
matrix ;. The right-hand side of Eq. (37) is a product of
unitary transformations and is itself a unitary transformation
and thus can be expressed as the form given on the left-hand
side. where B, is the Hermitian matrix and no longer
diagonal. Though it is difficult to show that the right-hand
side of Eq. (18) is equal to the tangent function of this matrix
By it should be so as we can derive one from another as
shown in Appendix A.

C. The Restricted and Successive Lecomte-Ueda
Teransformation. Lecomte and Ueda’s transformation is
too general for most purposes. Many useful conclusions can
be drawn with more restricted transformations. Thronghout
the paper. orthogonal transformations will not be allowed
between closed and open channel basis functions, i.e.. ™ =
II™ = 0. With this restriction. Lecomte-Ueda transformation



1564 Bull. Korean Chem. Soc. 2002, Vol. 23, No. 11

is described by p°, ¢, 1™ 1™ and will be denoted by
T(mu®. mus. 177° 1Y), Let us first consider the orthogonal
trans- formation which is allowed only among open channel
basis functions. i.e.. let us consider the transformation 7¢(m°.
mp, JP°° 1) and the problem of separating out the intra-
channel-block couplings from the inter-chamnel-block ones
in the reactance matrices. The way to separate those
couplings out in the reactance matrices is to let basis
functions have intra-channel-block couplings as far as
possible so that they are removed in the reactance matrices
as far as possible. Or. adjust the parameters in the Lecomte-
Ueda transformation so that intra-channel-blocks of
reactance matrices becoine zero as far as possible. Lecomte
showed that this can be achieved up to the level that
K’ =0 and K, =0 |i = L. ... X\ (the number of closed
channels)] with the transformation T(mu’. mu'. 1™, IV)
when there are no degenerate levels in closed channels. Let
us briefly describe this.
The submatrix &’ cai’be related to the unprimed

quantities in the same way as the whole A’ matrix is related
to the whole X

Krm — (”.[7')00&,,(”;” ”“Sinn:u” + cos ﬂ,u')) ]
4T - . =
x (TR T cos i — sinmu®) (45)

2210C

if we introduce the &7 matrix defined as

L2

K7 = K" — K" singp (K" sinmu” + cos ") e,
(46)

The right-hand side of Eq. (43) may be made zcro by simply
choosing the transfornmation parameters 11 and 4¢ so (hat
T squals tanmue. But notice that the definition
of the A" matrix requires the values of g in advance. Of
course. K*°" = 0 regardlcss of (he valucs of g as far as
R squals tanme, Tn other words. we have
freedom in choosing (he valucs of g, The best way of
choosing their valucs is. of course. to make the clements of
K7 sero as far as possible. 10 K7 = 0. (he corresponding
x’““ in Eq. (11) becomes

K= KRR 47
and we have K7 = R(x") . If we apply the V. conditions
of R(xS)=0 (= 1. ... N to Eq. (12). we have \.
equations for p which completely determine g, That is.
with the conditions of zero diagonal elements of R (&) all
the transformation parameters of 7(mu”. mu". H*. I'Y) are
determined and no freedom is left in the transformation. If
we consider the system imvolving only one closed channel.
the complete separation of the intra- and inter-channel-block
couplings expressed as K™= K’°“ =0 is achieved with
this transformation 7(ms”. . 112 7).

Let us limit the discussion to the svstem imvolving only
one closed channel for the time being. In this case. the
contribution of the closed channels to the physical wave-
functions (42) becomes extremum at tanf’ + R( KY=0
at which resonance takes place™ (We will follow other
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people’s comvention of calling this extremum point the
pole’. 1t is different from the mathematical term “pole’
which includes an imaginary part as well.) Thus the
condition F(eqtil odan indicafihg that

it is also the condition for positioning the resonance center to
the origin in the Lu-Fano plot. But. here. it should be noticed
that R(x““)=0 does not mean A’ =0. They are
identical only when A7’ = 0 . As we shall see. the case that
K’ is not a zero matrix but R(x™*“) still remains zero
plays an important role in studving the resonance structures.
Since the pole position is moved to the origin in the Lu-Fano
plot when ¥e{ w8 Catkthis kind of representation

the “resonance-centered representation”. As stated above,
not only At also can Ké“made zero with the
transformation 7(mu®. muc. 11™°, I°‘) when there is only one
closed channel. In this case. both Rk} and R(K")
become zero and. as will be discussed more in detail later.
the rank of the physical reactance matrix is one. which
indicates that only one chamnnel basis function shows a
resonance behavior while others do not. In other words. the
resonance and background contributions are completely
separated. We will call this kind of representation the ““pure-
resonance representation”. If there are more than one closed
channel imvolved. the pole position is approximately
obtained at det[tan8’ + R(x’““)] = 0 ." Inthis case. R{ kK’
= 0 means I1,, ,tanf3 = 0 and resonances are centered.
Further discussion on this problem is beyond the scope of
the present paper.

Let us next consider the successive Lecomte-Ueda trans-
formations. At first, the Lecomte-Ueda transformation starts
from the base pair for a single fragmentation channel.
Generally. the base pair after the transformation does not
belong to a single fragmentation channel and becomes
unsuitable for the description of partial cross sections. But. if
Lecomte-Ueda transformations imvolve only phase renor-
malization. the base pair after the transformation still remains
in the same single fragmentation channel and can thus be
used for the description of partial cross sections.

It is sometimes useful to consider the single Lecomte-
Ueda transformation as composed of two successive Leconite-
Ueda transformations. Successive Lecomte-Ueda transfor-
mations considered by Lecomte are the ones that the first
transformation only changes the base pairs for open chan-
nels followed by the change of the base pairs for closed
channels. We can easily show that these successive Lecomte-
Ueda transformations are equivalent to a single Lecomte-
Ueda transformation. For example. if the first and second
Lecomte-Ueda transformations are 7 (zu”. 0. . I™) and
T-(0, mu, 1°°. 11™). respectively, then 7-7) is equal to the
single one given by T{mu”. mpe, H™, 1), In this case. the
order of transformation is commutable, that is. 7>7, = 7,7,
There is another case where a single transformation can be
easilv decomposed into two successive transformations.
Actually._ all the Lecomte-Ueda transformations can be con-
sidered as composed of two successive transformations, first
by an orthogonal transformation and then by a phase renor-
malization by mu.
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Applying the Lecomte-Ueda Transtormation to the K
Matrix for the Two Open and One Closed Channel
System

Recently, for the system imvolving two open and one
closed channels. we reformulated MQDT into the forms of
the CM one. where we find that the resultant reactance
matrix still keeps non-zero diagonal elements even when the
axes of the Lu-Fano plot are translated so that the plot
becomes svimmetrical " This contrasts with the svstem
imvolving two channels studied by Ginsti-Suzor and Fano,
where the svmmetrical Lu-Fano plot is obtained for the
reactance matrix whose diagonal elements are zero. This
contrast can be studied by using the Lecomte-Ueda trans-
formation. Before doing this. let us briefly describe how
such a strange reactance matrix is obtained. The physical
scattering matrix § can be written as a product of back-
ground and resonance terms. 7.¢.. § = 8°S,. The background
scattering matrix 8* may be expressed in matrix form as 8? =
[ exp(=2i8™ "™ with the background eigenphase shifts &'
(i =1.2....) and the orthogonal matrix {”. The resonance
scattering matrix likewise may be written into the form exp
(=2i6.P) for an isolated resonance where J, is the phase shift
due to the resonance and is defined by —cotd, = 2(/—F,)/T
with the resonance energy /7, and the half-width I". P, is the
projection matrix into the resonance eigenchanenls.” Let us
consider the transforms 7§74 (7S and (7S
and denotes them as S. 8. and S.. respectively. If we restrict
the number of open channels to two. the orthogonal matrix
[ is expressed with one parameter. say 8, as exp(—i8,0,/2)
and the transforms $” and S, may be expressed in terms of

23

Pauli matrices as™"~
1 —i{d .J?\O'.)
S'=¢ T

. i(A1- da )
S =e . (48)

where §y= 8 + 8. Al =0, — 8. and »,’ is defined as
n, = R-A})R.(6,)5
= (sin Bi,cosAi]':\ —sin(),sinA‘,'zA cosfB,) (ED))]

with 8- defined in terms of half-widths Iy and I~ as

o = r,-r,
cosf, = R
. 21T, _
sin, = W 30)

Refl. [21] oblained

PR N 0 s ,
1 —ifdy 1 &) AL -idO-n,
=S['S}_=L’ B e e

S

-8y 1 8 -i8 6,

=¢ e . 31

where », and &, are given by
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"= R, (8.)z. (32)

1 gn — q(
cotd, = —cold,———

NE T 1

with ané —cot8,/cosA) & or 8, arc defined as

sinAT: (5. + cotA’ P 54
e (coto, + cotA,cos8,) (54)

i’

g,=-cotg, = -

The original scattering matrix 8 differs from & only in that
n, is replaced by sjjice R (8,}n,,
i i

Lo, lgo,

=

S=¢"

‘S(?: = i{dc+ &, )e isoon, , (55)
It is shown in Rell [21] that of Eq. (51) can be obtained
from & and &, of Eq. (48) by making usc ol spherical tri-
gonometry for the spherical triangle shown in Figure [, In
Rel. [20]. Giusti-Suzor and Fano’s mcthod of phasc renor-
malization is used to transform the physical scattering
matrix of MQDT into a form of CM given in Eq. (55). This
reformulation is not a simple task il three channcls are
involved since cigenphase shifts do not transform lincarly
but in a rathcr complicated way by phasc renormalization.
described by the spherical triangle in Figure 1. The sum-
mary ol the results of Rel. [20] is described in the next sub-
scction.

A. Translation of the Axcs in the Lu-Fano Plot. MQDT
can be reformulated so that its physical scattering matrix §
takes the form ¢55). This can be achicved when the short-
range reaclance matrix can be written as™

Figure 1. The spherical triangle formed by the three vectors <,
#, and n, is shown, which is used to show the geometrical
relationships among varous egenchannels emploved to smdy
resonance structures. Also shown s the sphenical triangle formed
by the three vectors 2. 2, and #, which is uscd for the Gailitis
average ol the partial cross scctions.
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Al Al &
ran—z“-“cosﬁ,, ran—z“-"sinf)u Los-(ﬂ +8,)
A
cos=
n v -
i tan—zu‘s'in 8, —ran—z":‘cose., —“‘A—Dsin%{e. - 6,) i
cos =
2
[}
JA_LO‘, (6, +8,) J—sm (9 a,) EtanA—z”cosO,
cosT cosT
(50)
where ¢ is defined by
T SO0
_ (KR ) -
5 - 1 I/\”OI (:’7)

~

In this representation. the physical scattering matrix s
shown in Ref. |20] to be related to the scattering matrix
S(CM) of the CM theory given in Eq. (35) by

S =¢ =§(CM). (58)

§ of MQDT can completely be made equal (o that of CM by
phasc renormalization but is left in (he present form in order
10 make the Lu-Fano plot symmetrical. This point will be
cxplained shorily alterwards. Let us denote the solutions of
the compatibilily cquation

soc

- lané N

R.(?(? IR,(7(,‘ + mnﬁ

K ~0 (59)

(or (his svstem as_tand, _and tand-. In this formulation. (he
cigenphasc sum &x(= & + &-) is madc identical to the
phasc shift & duc (o the resonance in conformity with
Simonius and Hai's (hcorem™>~" by imposing the condition

tands = —E/ tan[}. (60)

which holds when Katisfics

k=0, K=& ©61)
This X' matrix is obtained [rom the original A matrix by
only allowing the phase renormalization. Here. it should be
nolcd that the Lu-Fano plot for the system imvolving two
open and onc closed channcls is composcd of two curves (3.
0 and (B. &) Howcver. the graph we want to make
svmmetric in the new coordinale system is not those two
cunves. Those two curves arc not suitable for that purposc
because of the mutual repulsion which makes both graphs
complicated. The one we want 10 make svmmetrical is (3.
dx) as the cigenphasce sum in CM shows the same behavior
as that in a singlc open channel problem=-";

L2UE-F)

— = Sy+8,.  (62)

To make (he Ly-Fano plot symimetrical. the term 6;' of S(CM)
is removed in 8s shownin Eq. (38). Let 7w and s denote
the shifts 1o B and 8. respectively. so that the new cunve
(B. 8x)is svimmetrical. Their values are obtained in Ref [20]
as
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Ll -({. (-'(J Ll el

2{rA R — (KK
tan(2 ) = — L= I}‘ YK - |AD} - (63)
(trk” N LA R — (KK
+ (l _ IA—OO )-' _ (A—C(.‘ _ |[\.| )~
and
2{(1 _ IAH(I| trAU(l + lA trAUU
tan(2zy,) = — (KA )](!f‘\ - |K|)} - (64)
|I\OO|) + (A.“ _ |A| _ (t AUU -
[Ac{,tr]\{l() _ tr(AUcAL(l)J

Using the relations
lr[\-ool- A_< [+ -0() [r(A»OC[\»(.‘U)-I
+ (- IA""‘!)(A"‘“ ~|&1)

Ry = o 2 )

A& = 17 + (k™)
|ch|3=(|]\|—]\ ) +|_A trA —tr(A [\ )] (63)

dx2 = 7 + (kY
Eq. (63) can be rewritten as
qg «CU
an(2 mpy) = 2K ) (66)
1 — |K<.c -

If we recall the transformation relation (12) for K0t s
easily checked that_Eq. (66) is equal to “T(K y = 0. The
latter is tme forthe A matrix given by Eq. (56). Actually K
corresponding to 45 obtained as

~u. _ —tg (67]

and is purcly imaginary.

We carlicr started that the representation where R ( & Ky =
0 belongs to the class of the resonance-centered representation.
Lct us repeat it by restricting the argument to this specilic
representation. The pole position in Eq. (42) and obs{cr\ ablcs
arc given by the root of the real part of l'mﬁ + & for the
onc closed channcl system. /.e..

tanf+ R(x) = 0. (68)

[f we want the pole posmon becomes the origin of the Lu-Fano
plot { ﬁ 5,5) then R(x Y should be zero so that ﬁ is zero at
the origin. Thus the value of g5 given by Eq. (63) is the one
which moves the origin of the Lu-Fano plot to the pole position.

B. The Matrix in the Background Eigenchannel Basis.
The short-range reactance matrix K. given in Eq. (36).
vields the Lu-Fano plot where the pole position is the origin
but the matrix still has non-zero diagonal elements, meaning
that intra- and inter<hannel-block couplings are not fully
separated vet. Notice that. in order to obtain A . only phase
renormalization is used. But. Lecomte and Ueda previously
showed that making the diagonal elements of reactance
matrices zero cannot be achieved by phase renormalization
alone. We have to include orthogonal transformation as well.

Before considering the Lecomte-Ueda transformation
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which makes the diagonal submatrices A°° and A™ zero. let
us first consider getting rid of &, from the reactance matrix
A . The way of doing this is to transform the basis functions
from the background fragimentation ones to the background
eigenchannel ones as we will see below. It corresponds to the
transfonmation 770. 0. 0, exp(-/8,6./2). /], (Previously. the
notation 7(mu”. mu“. 11™°, 11**) is used to denote a Lecomte-
Ueda transformation. A little modified notation 7(zt. miiz.
miz, 7 1) suitable for the system imvolving two open
and one closed channels may also be used. Since they have a
different number of argnments. no confusion may arise in
using both of them at the same time.) If we use the double
bar for the transformed quantities, the transformation
relauon Dbetween the reactance matrices are given by
K=n"xn according to Eq. (7). where /" is given by

-'%9-;0,
=] e~ 0 | (6Y)

1t can be calculated as

.l ] .l
_ 15 9(, a. ~ a0 75 9(, C. 159(, o. ~oc¢
= € € ¢
K= . (70)
.l
iz 8,0.
aitere] AL el
K e K

Using (he Pauli matrix form of °° in Eq. (36) given as

tele]

K= lan%A',’:o" [R(8)z1. (70

the A matrix may be rewritten as

Al &
tan—= 0 S cosl(-],.
2 A']". 2
cos—=
A(I,, -
T 0 —tan—= S m sian
2 A, 2
cos—
- 0l
—E‘Tcosl-f), . sinle £ tan—=cos#®,
A 2 Al|l: 2 2
cos =" 05—~

(72)

Notice that &, in X is removed in &ind included into the
transformation. The transformation 7[0. 0. 0. exp(-i8,0,/2).
r jczmses a similarity transformation in the reactance matrix
as K = K11 and therefore eigervalues of the reactance
matrix and the solutions of the compatibility equation (23)
are not changed by it. Accordingly. the Lu-Fano plot remains
invariant under the transformation.

According to Egs. (7) and (30). only open channel basis
wavefunctions are transformed by this transformation. In-
coming-wave channel basis functions. for example. are
transformed as
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’1~lJ

(LY =

s )e égﬁ.

= ~ (=)

‘P =Y; (73)
From Eqs. (43) and (44). the transformation relations between
physical incoming wavefunctions and scattering matrices are
given in matrix form as

=.~|‘|i -]

PR S -'—‘I‘ L.

S_(',--")u<r S\, =

where exp(-i6:0/2) is identilied with the original matrix {*
which diagonalizes the background scattering matrix $9 of
CM. Since S_is identical to § of CM except for a trivial
scalar factor. § is identical 1o & except for the trivial [actor.
Since the background scattering matrix in ("¢ of CM is
diagonal. the incoming-wave channcl basis functions (73)
obtaincd from the Lecomte-Ueda transformation 770, 0. 0.
exp(-i&hoy/2). 1] arc background cigenchannel basis functions.
C. Complete Removal of the Background Part in K. Let
us now consider obtaining the reactance matrix whosc diagonal
clements arc zcro as considered by others. Inspccuon ol Eq.
(72) shows that this can be achicved by removing J;om
K. The removal can be accomplished by two consccutive
Lecomie-Ueda transformations 71(0. awus. /°. 1) and 7
(me. O 11ees 1) considered by Lecomite and described
before. 77 is buill to make (k") zcro. We first notice that
we do nol have a use for 77 as the real part of &°* is alrcady
zcro. In other words. 77 is the identity transformation. The
parameters g and 11* for 7 arc defined as cigemvalucs and
cigemectors of K of Eq. (46). Since 71 is the identity
(ransformation. X~ cquals K", That is. they arc obtained
by diagonalizing Fitig & Alrcady diagonalized. Thus
1™ is (he unil matrix and ° arc given by Aqud?2
-AY./2. Letus denote the reactance matrix obtained by (his
(ransformation T(A, JZ —A) /2. 0 Y /” ] as X . The only
nonzero submatrices in K arc X°° and And calculated as

id, id.own

T G 2 o P Ty

R = Kosmu’ = i’“’cos%A‘{': = (fcos%t‘),. ésin%ﬂ,.).
(75)

EcoslB

—u :p(; M ’
S= cos%A?zK N 12 . (76)

&sinie,.

Overall. the & matrix is obtained as
|
0 0 Ecos=8,

K= 0 0 isin%ﬁ,. : {amn

E_,cos%@r §sin%8i_ 0

Note that the parameter 3 for the &' matrix is not changed by
the transformations and remains the same as the one 8 = f8
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= f§ + mus as the transformations do not change the phase
shift for the closed chanmel. /... we have

B=P=p=p+nu,. (78)
The phy sical X matrix corresponding 1o & obtained as

- —ou —oc - —co. =] —ow
K=K"-K"(anB+K*“y K

:1 . |
. hw cOS 29,. sinz 9,..0052 8,
tanfi [ .1 1 2l
511129,..c0329,.. sin 29,
= ——L~ L (1+0-n). (79)
tanf3 2

where #, is defined as
n,=R(8,)z=zc080, + xsind,. (80)
Eq. (7Y) can be rewritten as
K=1angP,. @81)

where we have made use of

tand, = ——‘g_—x (82)
tanf

and
p= %(1 +a-n,). (83)
Now let us consider § which is related to Bf Eq. (81) by
S=(1-Ky1+iK) . (84)
By inscriing Eq. (81) into (84) and making usc of
(1+iK) ' '=1-P +¢ 'Pcosd,P, 85)
and the propertics of projection operators. we obtain
8§=1- P, + ¢ 0P =0T = 710100, (86)

Let us quit at this point the further study of the properties
of the present representation as the present one has only a
use for providing a means of obtaining more important
representation. which will become clear later. In the CM
theory for an isolated resonance. the ‘a’ state considered in
Ref. | 14] plavs an important role. The continua in CM for an
isolated resonance are divided into the "a’ state and the
remaining ones orthogonal to it. Only the ‘a’ state can
interact with the discrete state to produce resonance
phenomena while the remaining contimia can contribute to the
resonance phenomena only through the interference with the
*a’ state. If we can constnict the kind of "a” state in MQDT.
the MQDT reformulation can be directly compared with the
CM theory and utilize all its advantages. Let us do this in the
next subsection.

D. The Matrix in the Resonance Eigenchannel Basis.
Let us consider further elimination of the matrix elements of
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the short-range reactance matrix A so that it contains only
the inter-channel coupling parameter £ by separating out the
geometrical parameter &. This can be achieved by the
orthogonal transformation I~ given by

.
=] e2%% 0 (87)
0 I
which can also be expressed as 710. 0. 0. exp(—i6.¢,/2). £].

Let us denote the reactance matrix obtained by this trans-
formation as K. Then. 1t is casily obtained as

00 &
K=looo [ (88)
00

Since the transformation does not include a phase renor-
malization. we have

5-B-5 )

Using (he relation S, = (1 — iA,)(1 +iK,) . the short-range
scattcring matrix S, is casily calculated from A, as

1 -& 0 =
[ +& 1+ &
S, = 0 1 0o | (90)
2 = 1 -
1+ & 1+ &

Using Eq. (90). the form of incoming-wave channel basis
functions useful for the future derivation is obtained as

. g P €
(B = (6), - 08+ ()
L+ & 1+ &
(7). = (6. — (6 (R2Ry). (O

~ - |- & 2i _
7, = (0, - e g, + e,
1+ & 1+ &
By making use of the formula (30). the transformation relations

-1 . . . : .
of (\¥,™"), with other incoming-wave channel basis functions
are given in matrix form as

pil =g e ERN
' 0 1
g o || et 0 || 2% 0
0 1 4] 1 0 |
~ -] i i i
— \P\ ¢ E.‘!ﬂa._.es.-’\ua_e EH’G" ol (92)
0 L
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Or. more specifically, we have

—i-) i

(0 (7 = (P e e 207
~(=) o~ (=) 16,00 8.0 160,
=¥ 1.¥: 2)e” e e”
i-) __[—)_ ~ (-] .
(W, =¥ =Y;5 . 93)

Likewise. we can obtain the transfonmation relation between
scattering matrices. For example. let us consider the relation
between Snd 5. For the later unse, if we express sub-
matrices of S in terms of those of .. they are given by

l;.w — e {_,-\7,0-n,,e Lig - 9,_,10,.50065(9, - 8,10,,, tAlo n,
z z S, el 2 .
-~ Fon [ o
S = ¢ 300 g 318 - Bo,goc
~ vy 1 3 iun
8 = e 0, N,
Teo Lo
S=8 9
where the following relation is used:
i Pon ? I i
()_5‘%6-'(’ 3;\”0'(3_59:'6" - E—EAI:O-”oe—,}lG, : 9(.]0;.‘ (95)

Let us now consider the physical incoming wavefunctions
whose closed channels decrease exponentially in the
asymptotic region and whose general form is given by Eq.
(39). From Eq. (90). ... is calculated in matrix form as

!

EN

F

" 2 <
_(see— ey e

!

LB oy (it - B

~

tanf — i&”
iifp- sy doN "
¢ (—) (1.0} 96)
dp

and the phvsical incoming wavelfunctions ‘P;‘._] become

- - 5 dON12
Py = (P, + (PP 5,)(61_2;) forj =1,
r j -

¥, forj=2.

o7

o . . i-1 (=)
The physical incoming wavefunctions (¥, '), and (¥, )~
correspond to the CM wavefunctions as

1 ih)

CF) L Py = (e T eM). P (CMY). (98)

as shown in Appendix B, According to Eq. (43). the physical
incoming wavclunctions of the r-representation are related to
thosc of the tilde-representation in matrix forn as

RS SR gt s L _
N e 99)

Let us denote the (4. /)-element of the transformation matrix

between the physical incoming wavefunctions of Ihg(._]i-

representation and those of the tilde-representation as (\F, |
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(W!™"),). We may s.inu'lgr}_\'I consider the (;. /)-element of the
transformation matrix (¥; | ( ‘P;‘._]},) between corresponding
channel basis wavefuncitons. From Eqs. (93) and (99). we
have

v ey, ) = (97w oo e, oo
(\P]- |(\P£ ))1 ) = (\P] |(\p; ])‘; ): |:€ i .O'_.ez _(T_e 3 (7:| I
'

(100)

From Eq. (BY). we also have the relation

[}

= - Pl PR Log, =0
(%7 e )= (%7 w7 )= e e v,

(1o1)
where i = L. 2 corresponds 10 a. h. respectively.

The physical reactance matrix can casily be calculated
from the short-range onc given by Eq. (88) as

K, =tandp,. (102)
where the projection operator g, is defined as
o= %(l + o). (103)

By making usc of the relation S, = (1 — iK)(1 + iK,) ' the
physical scatlering matrix can be calculated from  the
physical rcactance matrix as

§,=e % 100 (104)
Noticc that this S; is the diagonal form of the resonance part
8, (CM) in the factorization of the physical scattering matrix
into the background and resonance parts as S = §°S, (CM) in
the CM theory. This indicates that S, is represented in terms
of the resonance cigenchannel basis functions.

Now. lct us consider obtaining the solutions of the com-
patibility cquation for this representation. Let us denote the
solution of the compatibility cquation as Then the compal-
ibility cquation (23) for this representation yiclds the follow-
ing cquation:

and (land anf + £ = 0. (103)
which yiclds two solutions consistent with those of (102)
and (104). namely. only onc of them has a nonzcro value
whosc phasc is cqual 10 . just the phasc shift duc (o the
resonance. Expansion cocfficients (Z,)i are cqual o () =
Sy fori e 1> and become for i € O as lollows™

Ecosd, (d(Sr)l/Z . .
Z)5,=1  snp  \dp P=% (106

0 forp=2.

This may be compared with the Z coefficient for the &
matrix obtained in Ref. [20] as

. ds,\1 2 cos%&,— for p=1.
Zip= (—N (107)
p Sin%GJ- forp=2.
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E. Transtformation Diagram and Hierarchical Structure
of Resonances. The transformations and resultant reactance
matrices considered so far can be summarized with the
following diagram:

.
SK(KUC)io T(?‘L"ul. 71'}“3_ 7'(]“3_ 11;0. [L‘(;)
R(K"y20
A
qr ¢ b fl .
Rxy=0 ’1{0.0‘ 0. ¢ %% f ]
S(;(“) _ k2 X
9‘(;((71/) 0

S
1 K = ) I ul 00 400
W(&“) ( \. TGAL"‘ -%Ai:.o. 2o 1
I(EY=-&

R 20
K K,

dp Tl ,~l . R K‘ic =0
< X(_Kh) 0 “ T[O.l)_ - 39’6"./“} (K5
(Y =-& )

\),t(;cﬁﬂ) — 0 9{(,{_270) — (]
(108)

In the above diagram. the last four representations belong to
the group of the resonance-centered representation as the
values of R} are zero in all of them. Actually the values
of x* themselves are the same in all four representations as
x* = —i& This derives from that the four representations are
connected by the transformations with no phase renor-
malization and no orthogonal transformations in closed
channel base pairs so that X remains unchanged as evident
in Eq. (12). Generally. R(x; ) = 0 does not imply y; =0
and /I™ = J* as can be easily seen from the counts of the
number of conditions. But if it is assumed to be so as in
the present syvstem irmvolving only one closed channel. all
resonance-centered representations have the identical energy
dependence in wavefunctions (42) and subsequently in the
cross section formulas. The important thing worth of notice
related to the resonance-centered representation is that the
present svstem has a resonance-centered representation. the
tilde-representation. which is suitable for the description of
the fragmentation processes and obtainable from the starting
representation by the phase renormalization alone.

The last two representations enjov further zero given by
RO =Ry =0. If K"K""“< 1. the solution for
both's being zero is obtained only when both Afd K
are zero as shown in Appendix C. For this solution. the
physical reactance matrix AiAs rank one and thus has only

3k =8
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one nonzero eigervalue given by the tangent of the phase
shift &, due to the resonance. The representation where a
reactance matrix has nonzero elements only for A™ and A°
submatrices so that the physical reactance matrix has rank
one was already considered and used by Ueda for obtaining
a Beutler-Fano total cross section formula in MQDT for the
systems imolving one closed and an arbitrary number of
open channels.* Representations showing this behavior were
called the “pure-resonance representations” earlier in this
paper. In the two channel system, the translation of the origin
of the Lu-Fano plot to the inflection point is egl}i\'z-lleut to
ﬂnding the phase renormalization so that R(x ) =0 and
R(x™) = 0. For the system involving two open and one
closed channels. 9?(?(“) =( is still the condition for the
location of the origin to the inflection point of the Lu-Fano
plot. but 91(?(00) =0 is no longer obtained by making the
Lu-Fano plot symmetrical through phase renormalization.

It may be corvenient if each representation has its own
name. Let us call the last four representations in the diagram
as the tilde-. double-bar-, bar-, and r-representations. respec-
tively. The diagram shows that the Lecomte-Ueda transfor-
mations among these representations are expressed in terms
of parameters 6. A,~. and 6, which are used before to
construct the spherical triangle in Figure 1 for geometrically
representing the coupling between background and resonance
scatterings in the scattering matrix. Therefore. it may be
natural to examine the correspondence between the diagram
and the spherical triangle. Though in MQDT all the open
and closed channels should be included while only open
channels are involved in constructing the spherical triangle.
this is no problem in the current study of correspondence as
the four representations of our interests differ only in open
channel parts. The space spanned by open channel basis
functions for each representation appears as a coordinate
svstem in Figure L. This coordinate system undergoes a
rotation about the v axis to a new one by an orthogonal
transformation in a Lecomte-Ueda transformation. It under-
goes a much more complicated transformation by phase
renormalization as we will see in a particular example shortly
afterwards. A physical scattering matrix is represented as a
vector in the space (called the Liouville space by Fano™)
where the spherical triangle is drawn. [n Figure 1. the
coordinate svstem corresponding to the tilde-representation
is given by xipuz, (the xq axis is not drawn in the figure).
From Eq. (74). we see that #,," is transformed to #, by T[0. 0.
0. exp(—i8,6,/2). I'']. i.e.. #. = R (-6, in the transforma-
tion from the tilde- to the double-bar-representation. This
means that the coordinate system is rotated about the v, axis
bv 8. Therefore the z axis of the double-bar-representation
is equal to the vector z in the figure. Let us next consider the
transformation from the double-bar-representation to the
bar-representation. The coordinate svstem corresponding to
the double-bar-representation undergoes a rather complicated
transformation. In order to see what is happening. let us
consider the formula of § from § and then rewrite it as
follows:
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- -8, —-\ .G -8 On, —\ N

S=¢ e ¢ el
i i
e 30 Lsgon 3000
=e¢ ¢ e
id, ido-n,
=¢ e {(109)

The sccond cquality of Eq. (109) follows from the reverse
coupling of Eq. (51). that is.

=S (110)
which shows that the phascs arc not simply renormalized.
Actually. cigenchannels which are the very nature of dvnamic
coupling arc also changed. Such a change appcars as a
change from #, to # The phasc is renormalized [rom 4§, o
6. The third cquality of Eq. (109) indicatcs that the phase
renormalization also causcs lhc rotation of the coordmalc
svstem about the = axis by —A) .. thal is. #, = R(A),)n,"
The Lecomic-Ueda transformation (rom the bar-rcprcscnlallon
1o the r-representation corresponds (o the rotation of (he
coordinalc svsicm aboul the v axis by —8, so that #; is now
{he z axis in the r-representation,

Let us end this scction with some comments on the above
resonance structure diagram. The representations in the
diagram arc classificd with respect to the structures of (he
short-range rcactance matrices A. Short-range scallcring
malrices & cannot be uscd for (his purpose of classification
as they still keep nonzero diagonal (erms even in S, 1t may
derive from the restrictions scatlering matrices should satisly
such as the unilarity and the existence of the pole duc (o the
resonance. The latter pole structure. visible in Eq. (90). is
absent in (he reactance matrix.”* In order (o obtain the bar-
representation. we do not have to consider the double-bar-
representation. It can be obtained (rom the tildc-one by the
transformation  TEpQ,/2. —AT./2. -i8,6,/2). 1.
Also the r-representation can directly be obtained rrom
the filde-onc by (he successive transformations  7TA},/2.
—A]JZ 0. exp(=i8,G/2). I™°] 1[0, 0. 0. exp(—i8,.0,/2). I**].

sl o —id e n,
¢ ¢

Photofragmentation Cross Scction Formulas

Though it is customary in M(%DT 10 usc the asymplotic
cigenchanncls ‘P,> 10 expand ¥
T gy e
L7 % N
24
it may bc morc natural (o usc the incoming waves as
expansion channcl basis functions as in Eq. (42) which is
reproduced below:

(1

= NG
vy | |
T W ang + dganf + &Y K=+ KO .
ke

(112)

Strong cnergy dependence enters Eq. (112) only as a term
(a8’ + H(lanf + ) and becomes simpler in the
rcson.mcc-clcntcrcd representation as {tanf8’ + H[tanf’ +
iS(x)] . As stated before. the termn is imvariant under
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the transformation 7(zu®, 0. JI*°. I'Y).
Let us first consider the tilde representation. From Eq.
(56). the submatrix &t cAnbe expressed as

I ele)

: |
AN = tzm—A'f:d- Ry,

3
3 (113)
where the vector n, is defined as

= R(8,)z = z¢088, + xsing,. (L14)

With this R (i + £°°y” can be written as ccos(Alﬁfz)
expl= :A]\O' #0/2). Multiplying this into the submatrix K
of X in Eq. (56). the physical incoming wavelunction
decomposing into the j-th channel becomes

~ i, i.0
~ (= -~ ~ (- 2‘lﬂ§+f E\H..l thia, —EAHO‘ ny
‘Pj _l}’ + él}‘ ~ =| ¢ € .
1

tanfd —i&”
(115)
Using the relation
i+ sa(do\ 2 3 Z_3+'
e "’“’"(—N) o (116)
dp tanff — i&"
it can be put into
¥ =
dp 1
(117)

similar (o the form derived in Ref, [31] for the two channel
systen. The explicit expression of the last tcrm of Eq. (115)
is given by

%(6, o, '2‘5?:6' Hy
e e
L

cos%( e, + fi*,.)c;osl

2;3':[’3 sin%( 8, + 6,.]005%13':[’3

o ! o] 1
_zcosi( 6, - 9,.)5111551[3 —zsmi(a, - 9,.]s,miA‘]'2

1 | _1a8 NAJ.
cosEG,,cosif)re 278 sing f)ucos ge "

= ) C(L18)

cos 6 sm Ge” i

I IR NN
—511158(,511156,_03 i

No“ let us introduce the new shorl-range wavelunctions

5 " and dendcd by

- : -

;\{;_] _ ‘i‘ T q! [}:.CO(_ i+ I:,ao] ]'I,,.

RFE

P gLl

—‘P g—q‘\ [!\ (—1+}\ ] ]3_, (119)

so that the square of the modulus of the transition dipole
moment is expressed into the Beulter-Fano formula:
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DT = e 10| = [t har‘%%i
{120)

where 7'is the dipole moment operator. / stands for the initial
bound statc. and the complex Zgivcs the linc-profile for
spectra and is defined by

NS T
i = IQ@ (121)

(A4 “1’)

The forms of A/~ and Minctions which yield the
Beutler-Fano formula arc the samc if the representation
belongs 1o the resonance-ceniered onc. In thal representa-
tion. the physical incoming wavelunctions arc expressed in
tcrms of them as

tanf3/
\pj =Af" ]_&
anﬁ/e‘; -1

ST [ c0sd, +iNy”

anﬁ/é -1

sind,}. (122)

Here 1}{—) plavs the role of the background wavefunction in
the CM theory and dominate the physical incoming-waves at
the region of no resonance effect w here the phase shift &, due
to the resonance is zero. Especially, A/~ " is related in matrix
form to the standing-wave channel basis functions belonging
1o open channels as

W= AL+ K, (123)

Eq. (123) is the contracted form of ‘}‘ % ‘{" '(l TIiK);
with U' : corresponding to ‘{‘ In tlus case. the
commcuons is made so that \/ dlone measures the partial
cross section in the region of no resonance. which is attained
by making the contribution of regular part of closed channels
zero:

M7 =6- 3 g0y T (6 +0)I(1+57) 5y
ie P ie Q)
(124)

where (BI +8,) is cventually a unitary transform of only
irmegular functions i®g;. Eq. (120) may be used 10 obtain
parlial cross scctions ¢ (lor I_(\[ |71;) ). 93((;}) \\(q)‘
and (he functional form of tan 8 as a function ol energy from
the cxperimental data using the method developed in the
ficld of modcling of data.™ For sharp rcsonances. we may
usc the well-known first-order expansion

tan@ E-E,

é: r,/2

near the »-th resonance to extract 7, and I', instead of the
functional form of tanfB as a function of energy from the
experimental data.

In some experimental situations. cross sections averaged
over resonances are only observable. For this. let us first
write the square of the modulus of transition dipole moments
using Eq. (117) with Eqs. (100) and (101) as

(123)

Chun-1i 00 Lee and Ji-ffvun Kim

R 6,-({1.-3)((15,.)‘ 2=
db )

~l'—1|3_ e I B DO N e

D+ Dy My e

(120)

where D;_' denotes (‘P; ]li’li) . Let us next take an average
of Eq. (126) over one resonance interval with respect to .

The energy_dependence of an interference term is given by
either (l(mﬁ + H/{tanf — 15 or its complex conjugate and
its integral over one resonance interval can easily be shown
to be zero. Getting rid of the interference terms and utilizing
the mteg,mlj L (déd, f(/ﬁ)clﬁ/zr I dd,/m=1.the energy

il
average of Eq. (126) over one resonance cycle is obtained as

Ao =651 + DS . a2
Eq. (127) is identical with the result of Gailitis’s formula
given by’

Aoy =l + LBy

-|5,,|

as can be easily seen from Eq. (94). |53 f(l — X
probability that break-up of the resonance gives ; «md in the
present form is given by

(128)

1)

cos’ = for j=1.

~ 12
|S3[| — | (“')lwg‘))r = § (129)
1—| 33’

i for j=2.
sin"=- for j

where 8, is defined as the side angle for 4. of the
spherical triangle A4 in Fig. L. Notice that the frag-
mentation branching_ mtlo avi era;:,ed one resonance interval is
determined by cos” 9 '/2 :sin (-) /2 where is constant of
energy and the same for all resonance levels belonging to the
same threshold. The unaveraged branching ratio varies as a
function of energy as far as the line profile ¢, and qwe
different.

A, Total Cross Section Formulas and the r-Representa-
tion. As is well-known, the photofragmentation cross section
fornmlas take the simplest form in the r-representation
which is corresponding to Fano's "abc..” representation (the

a’ state is also called the “effective contmuum . In the r-
representation. only the process to { 'H}OW$ the
resomnce behavior while the remaining processes, the one
to (‘I‘ ) here. are energy- msenslme The transition dipole
moment formula to (‘I‘ )1 can be e\pressed into the
Beutler-Fano form with introduction of (A7, ) and (\‘ J
deﬁned with the same formula as the one (119) for U dnd
A\ i e,

CTAL TS R RC
('Y, = (wf_‘))]—é(lp',i")j

ALY, = (Y, = T, (130)
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With these, the elements of the transition dipole moment
vector to &J{ﬂ;e written as
anﬁ/g +q.
(D, = (47T ——="
tanf3/E+i
(D, = (L)1 = (¢,

(131)

with the line profile index ¢, defined as

((\1 )) ! (132)
(M) )|111)

’..

In the r-representation. (17, ) and (b\zkohgc stand-

ing waves. From Eqs. (32) and (88). the relation between
standing-wave and incoming-wave channcl basis functions
1s obtained as

= (¥ SR,
¥,

YT )
3) vields

(¥,
(¥,),
¥,

(133)

Comparison of Egs. (130) and (13-
(AL = (),

(N, = 308,

5 ;

(AL = (VT = (¢ (139

Inserting Eq. (134) into (131). we obtain

- tanfs/ +(,
D, = (0 I
tanﬁ/g +i

(0,7, = ((P).1710) (133)
with the new formula for (he line profile index ¢,

(P
q;_:_w_ (136)
E(WP, nITH

The new formula for g, clcarly shows that ¢, is real.
From Eq. (99). (he transition dipolc moment vector D
is D' related by the unitary transformation as

D) = P Te 180, huy, 3RO (137)
implying that
I = X o)
jE P JEF
(tanﬁ/é‘ qr) .
— |((‘P ) ITI:)| (138)

fan” ﬁfg +1

With the substitution —coté, for tanB/& and the introduc-
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tion of the angle 8, defined by
q, , -1

COSG( = . SuﬂL = . (13())
1 JL+g) ! J1+q
Eq. (138) becomes
> |I5f_]|" = [(CCEITINP(L + gysin’ (5, + 8)
JEF
+ (P00 (140)

if we take an average of Eq. (140) over one resonance
interval with respect to ﬂmd use the formula I o3 “sin -
(6.+8 )(/B/Jr— (Jj‘q,‘+ YL+ Jj )(1 +q, }]. we abtain

>+ i)

(2 =-—=
1+

jer
+ (¥ 11

= e 0] +[ceean| + \((W‘l"‘»lnnll

= e 1l [ el + | oS s

which is (he cxpected result from the thcorem duc to
Gailitis* and cnsurcs hat total cross scctions arc continuous
across the thresholds.

Eq. (138) rcsembles the well-known total cross scction
formula for pholofragmentation in the ncighborhood of an
isolated resonance given by

Gy = O, (_q)_ +o, ( CM (142)

£+

if we substitute & for tanB/&” . In Eq. (142) o, and o,
demnote the cross sections to x;md respa;zh{el\ For

the compdnsou. let us first relate (V,), . (¥,).. and (¥,),
with l;/"' tp'"h). and ¢, . respectively. From Egs. (91).

(133). and (B2). \\elm\emR>R,,

(P,), = (0,),—(8),+E[(8,); + (8,);]
=y HEL(B): + (8));).
(q’;»)g _ V/[b)-

(W), = (6= (6))5+HEL(E), + (8] (143)

From Eq. (B15). w¢ have

9 _ _
= N l —=1(8,); - (Q-);J% .R2R,.
20211 o Iy Ecos™ p )
f-nrm (144]
Then
D, 0. i
EK«IEJE .ﬁ"»13+w.]
77’-(Zk| ! vkhl_) ”(Zkl I 'H-_'I 9
= () O - — 18- )| R2R,
Ecos™ B -

(1435)
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and we obtain
D,

e
O [ i

Eqgs. (143) and (146) tcll us that the background parts of
MQDT and CM arc identical but the resonance parts which
arc described by closed channcls in MQDT and by a discreie
statc in CM become cqual when € become zero. As a result.
we obtain the approximate cqualitics between MQDT and
CM formulas for small & ;

—l,(‘i’,.)l (146)
¢ 3

), 1210 = (|11, (147)
((W,)51711) o
9=~ T = q(CM).
5((\{;;)1“]’) 1‘“'7’]/)”(2;“‘:' )
(148)
(ol

Notice that the difference between (‘\Hd)] is an y
exponentially rising term in /f;l((')) +{8.),] from Eq.
(143) but its contribution to the transition dipole moment
vector becomes finite as it is multiplied by the initial bound
state ;. Then in the narrow resonance limit. Eq. (147) is
expected to hold.

B. Partial Cross Sections and the 1~Representation. In
order to understand partial photofragmentation processes. it
may be better to express them in terms of the elements of the
transition dipole moment vector of the r-representation. This
can be aclhieved with the transformation relation (137)
between transition dipole moment vectors. Using the
transformation matrices (100). we have

D= X ), ¥

iel

= 0 1))

ie P
~ (- : ‘{‘ W, i
=(\P)[ )|7’|f) Wnﬁ;’g +g, (‘" I(‘P )1)(( D710
tanﬁ/éj +i |;1,)
P
Al >)(<\P mm} (19)
;17
Let us define p; as
CARLPNN S =3\ |71
pjz(‘l’, [P O, D 150)

=3
11

in analogous to gidentical to Starace’s
defined as'®

a*(j £} ") of CM

e @)
(v, 1710y (v, 170

where 22, is (he projection operator 1o ¥

pACM) = (151)

3]
© Then, we have

~ i)
ql
S G40 (G A N 1 S

: CF T
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trom the 1dentity

(=)

Il
A:.G i

(CIRBIC ORI RS IC IS HC I A I ,
(153)
The ldelmt\ (lﬂ) derives from that the transformation
matrx (ﬂ‘a i{l’tﬁar\) mateiy? rom it

and Eq. (133). we obtain

=1

v | + [ e ¥

~ (=) (- - ‘
=W ECE LT (154)
Then
~i-)
SRR C AN . 3
yan =p,~i&a. (155)
¥, 1719
where ¢, is defined as
¥ IE ) CE)
_{ I( )[)(( ) | lf) (156)
(\Pj |7-1’)
We (inally obtain
anf/E+g,
Do M0 —igg) LG s,
tanf3/ & +i
where §; isrelated to ¢, = i+p,(q,— 1) as
. _4;—i84,0; .
Ak L
7 = 1503 (158)
and il can casily be shown that
~ (=) . i
Oy 1T —iéoy) = (g |71 (159)

whereby Eq. (157) gives the formula identical to the ong in
Eq. (120) as it should be. The parameter p, is the analogous
form to the line profile index p; (CM) for the partial cross
scction in the CM theory defined as g{CM) =i+ p{CM)
[(CM)~i]. The parameter g, may also be wrillen as

=i+ pilg,=1). (160)

with giefined as  (p, - i&o,)/(1-i&a Notice that ¢,
and g, are obtainable from the total and pdrtldl Cross section
measurements, respectively. Then. Eq. (160) tells us that we
can obtain got Arom those two measurements. If & is
negligible. the line profile indices §; and ¢, become equal to
the CM line profile ¢,(CM) index as shown in Appendix D:

4, =q;=q,(CM),
P, = p,=p(CM). (161)

Here. as shown in Appendix D. {he above MQDT
parameters differ from {he comesponding ones in CM notl
only in {he resonance parts but also in the background parls
though the difference in the latter is the second order in €. in
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contrast to the case of total cross sections.
Summary and Discussion

The dynamics in the reaction zone are studied in the usual
MQDT by the distortion of a fixed regular solution along a
fragmentation channel in the outer region. The extent of the
distortion is given by the short-range reactance matrices A
which multiplies an irregular solution. Giusti-Suzor and
Fano modified the usnal theory so that the part of the core
dynamics incorporated into the base pair for a motion along
a fragmentation channel is no longer fixed. The freedom in
the allocation of the short-range dvnamics between the
motion along the fragmentation coordinate and the short-
range reaction matrix A is combined with the orthogonal
transfornmation considered by Lecomte. Ueda and others to
reformulate the MQDT theory into the form of the CM
theors and thus to make MQDT have the full power of the
CM one. still keeping its power of being able to describe the
photofragmentation processes with only a few parameters.
These parameters allow clear physical interpretation in terms
of geometrical transformations and interchannel coupling
strengths as in the work of Giusti-Suzor and Fano for
systems imvolving only two chamnels. In the present work,
the geometrical transformations have more diverse origins
because of the additional open channel and are studied by
the geometrical method devised to study the coupling
between background and resonance scatterings. The dynamic
parameters with simpler and more transparent physical
origins or meanings responsible for the experimental data of
total and partial photofragmentation cross sections are
subsecuently identified.

Notice that some short-range reactance matrices are
expressed with parameters specific to the open- and closed-
ness of channels even though they are defined in the region
where open- and closed-ness of channels cannot be defined.
This peculiar aspect of the present theory remains to be
investigated in the future. besides the extension of the
current work to the systems imvolving more channels.
Actually, full investigation of this point is very important if
we remember that the unified treatment of discrete and
continuum spectra hinges on it.
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Appendix A: The Derivation of Eq. (20) from Eq. (38)

We lirst notice the relations:

ST =ik - i)Y

Bull. Korean Chem. Soc. 2002, Vol 23 No. 11 1575

L

§ = 201K )Rkt )

L -1

S 20 =ik YR - Ry

§7 -1 kY -ik) (AL
where x¥°  isdefined as
O S SO GV NI SO Y S (A2)

Let us first rewrite $7 " —exp(2iff;’) as

R S I e T L | e
—=2i = e cos Bl cosm —sin 11 sin )
X (tan B, + &7 )1 — i) (A3)
We will need the lollowing formula for the subsequent derivation:
(8 LMY s o1yt - é(l — ik ) (tanf+ &)L —ik ).
(A4)

which can be easily derived from Eq. (A3) and (87 - y'-

(1 - ix"" )2 . Substiluling Eq. (A1) into Eq. (A4). we oblain
S/Cs'l (S).'s' ("".’?51")-]_(‘5‘/,‘: - 1) ll‘gh“‘
=201 K YR an B0 kYR (1=K (AS)
With Eq. (A3). Sfl:‘q. (38) can be rewritten as
R (o AL LR P K
= ORI IR R an By k) K=K

where the cffeetive ¢ matrix analogous to ¢ dctined by
K= il o Y (1 -a ) (AT)
and obtained as
A S LY LIRS PR (A8)
With Eq. (A6). we obtain
(1+8) ' - (1-0")' = éx' (anB, - K VRTT. (A9

From Tg. (A9) and the tollowing identity
(ta“ﬂu" . ;\-:;:) 'l\-'co(_i . l"/)-l - (tﬂflﬂ;-’ X h.l.'.'J 1[\.,_-_-(_ il Kx:) 1'
(Al0)
Fp. (20) is casily obtained.

Appendix B: The Correspondence hetween ‘Pf.—] and ¥

Inserting Eq. (91). £ Eq. (97) can be rewritten in as R = R,
. BPY T e A g
or Y, - et @t (2] e e o .
dag
(W, '), — (1) (8).—(8), E1)

In order to show that the above physical incommg wavefuentions
(W, "), and (Wrgspond to the CM wavetinctions !
exp(-id,) and -Hipectively. we [irst need the following
relations:

(8),=(8.) - ¥

(B):~(&) -y (R2)

which will be derived below. where ¥ is the "a state introduced by
Fano and delined by
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o X y;ﬁ_-"

(B3)
('

with ydenoting the incoming wavelunction for the continuum
which breaks up into the chummel 4. 1t we denote the discrete state by
$r  with energy £,. i in Eq. (B3) is defined by (.| ) -
Fano’s "a” state can altematively be given in terims of the background
cigenchannel wavetunctions ., for $* as

o Zow(wline-) r.y'°
g S SULC L B4
()" % w(r) o

where the lust_equality follows from the definition of T, as
(w6, ) =T 27 and 2xZ]i% | - 275 (w4 ¢. )| -
(sce Ret. [21]). Note also trom FEg. (30) that

W) - J; - o

From Egs. (B4)and (B3). we have

y - y/lcos%— zpzcos%. (B6)

N . [ al
If we denote the continuum orthogonal 0w Wil may be

given by

v .8 8.

woo- “ysins | Yioos (37
From the above two equations. the relation between Fano's "ab’ slates
and the background eigenchannel wavefuncitons can be wrilten in

matnix form as
PRIt . 'éa‘"‘ Coa ' 'é""”‘ ?"‘IZ RIRAl -3em
A B A e L N VA T 0 el
(B8)

From this relation. we obtain the transtormation relation

e o ihw, Iy Iho,
(v ™y - (e' ¢ e’ ) 5]

where A is used to represent “ab”. Tn the CM theorv, we use another

tvpe of continuum function which lags y'''

in phase by Y0% If we
. —_lt .
denole itas ™ . it can be expressed as

Wil ()] R2 R, (B10)
From the relation Rye-haps— 1702 — 82,
1 ‘ _ 1 2m, n
2 TRy 6 (Bl
Using this rclation, the backeround incoming wave y4™" can be
rewritten as
':Vl_.' l E 2m 5, e -;__:.Si)
7:&_:
i . . 1, Ll
e [ - 3R R 3"""’-
-y (9 5.6 [g- P ]_)‘RzRo. (B12)

Multiplving Fq. (B12) by exp(78:2) exp( i8,6.2 ) exp(iA), 022
exp(—i8.0,2 ) and using

> wff [e_é&me_;'\. u'e_éﬂ'rril —-(8), (B13)

and Eq. (B8). we obtain Eq. (B2).

Chun-1i 00 Lee and Ji-ffvun Kim

Let us next consider obtaming the CM term corresponding to the
second lerm on the nghi-hand side of Eq. (B1). Using the lonnula
(25). we can easily check that 1t as an exponentially  decreasing

g
function as
RS T U N /"’* Dy
K,

as 1 1s constiueted so. [T only closed channels exist. the above [unction
would be a true bound state. Since open channels also exist. it is not 4
truc bound state. As a good approximation. we may regard it as a
discrete state in CM. We can nomalize it by the well-known
procedure® and thus can be related to the space-normalized (m
CMas

(Bl4)

a9, @, .
(—v) ()= (00| =e———sing. R2 R,
dp AR {6 [ (B15)
From Tgs. (B2). (B10). and (B1). we obtain
e dao, L 3
R G ) (8~ 80|
dﬁ
= y/""cosb', - E'""'sin o, — I—"‘smb.
)
sin g, o
- —|:(D - v ‘cos&] (Bl6)
mE

where . is the nmdllled dlsclete state with energy £, introduced by
Fano."* If we define ¥ as — ' then we have

(2} ) (8, ) = (), (B17)
where " is delined s
W, L — Y eosd, (B18)
(00 [

and extensively used in the CM tlleol)-‘.“‘”‘

Appemdix C: The Solution of R(x"")=0 and R(x")=0

From both Hide™) Rifwnig 7ero, we have

K= I\-::A-:\'(I | I\-c.'!) ‘Avco (Cl)
A" -K"K(1-K Sy R (€2

Let us limit the discussion to the svsten involving only one closed
channel. Then msertion of the tormula (C1) for A7 into Eq. (C2) and
then rearrangement of terms vield

/;‘f[l - lk_i ISHURE S 'f\""} - 0. 3

Eq. (C3) has two solutions. one is K~ — 0 and the other is

3

1+A""
k'\' N kﬂ\' .

Ik )~ - €4
K =0 Tollows fram Eq. (Cl) il K — This is the desired
solution. Let us next consider the other solution. In this case. let us
restrict the number of open channels to two as in the present svstem. In
thig case, the condition imposed on A7 tar all the resonance-centered
representations 1s (K ) — 0 from Tgq. (61). From t(1) — 2 and ()
~ 0. the condition £oi thd resonance-centered representation

means hat k is a linear combination of only Pauli matrices. From
(@)y-1. K is easily seen (o be a unit matrix multiplied by a
positive constant. sav a”, Then.
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B O R IR G Gl S S (3

From Lgs. (C4) and (C3). we have

KK = (1K1 - a2 1. «e)

From the above cquation and the positiveness of KA. we obtain

the condition AhéAccend solution satistics.

Appendix D: Relations between Parameters for Partial
Cross Sections in MQDT and CM

The p; parameter of Eq. (130) can be rewritten using Eq. (101) as

-1"5. L
P (yt ¥ DT ) wh

VORVES

In order 10 give u relation 10 2, (CM) of Eq. (151). we need relations of
(e ')l und ‘{41111 qnd 1espam1\el\ From the relation
O[O ), -1 E(P.), 1700 1 &) inverse 1o Eq. (133) and Eq.

{(143). we have

L 2E(8.);

s 1 Lae el ke s
(\'}':'):_ﬁ{w SIEN (8] R2R, . (D2)
TS

Next, let us consider Li’f".' s form in B ziken by
S B Y WON X o (L3)

Aller some manipulations. S and 8 can be caleulated Lrom Eq. (94)
with Sid-agl  Eg)(1+E)  § - —2i&1.0)(1 - &)

PR | T

S - - ¢ (1-Eqg-n".
G S )
- i & LTS -%a\;. "
- ﬁ:t_:[«_l n e o] ‘ (D9
1 & 1
where 1,7 =R, { ALDR.(8. - 8,)z. With these, Btomes

R A i S )
e g
PE o~ DG B, Ty Loy
'A’;G{e‘l Tt ] (M5
1- ’L;' 1

. ] ot . - .

in R =R, . Fxpressing 8 terms of the background meoming wave
N

W ousing

i

-6 }:6(

obtainable from Eq. (B12). }:q (D3) becomes

3

e "”'“) R=R, (D6)

i =) ol " o).
TG
PE~ U AT S
. —5—21 “?93[«'[ E ¢ ’ ] (D7)
1-Z L
mR=2R,.
Egs. (D2). (D7). and (D1) tell us that as £ goes to zero. we have
(F, =y
li’J.l-.': vj‘ 'L,S.)'T
p.=p(CM). (NY)

. . . . -
Here notice that. in contrast (o the case of tetal cross sectiens. (M%),
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and Wow difler from the corresponding ones in CM not only in

the resonance parts but also in the background parts though the
diflerence in ihe latter is the second order in & [n contrast o this. the
ditference between two theories in the formulas of partial cross
sections does not appear in the background parts. Since partial cross
scctions arc expressed in terms, of (\1 17°§) in MQDT. let us
consider the relation between \afnd Eq.119) cun be
rewritten in Az R,

Mg - 85, -3 (F-ea-5 Y,
% (0 -6 S S, 09)

where o is delined in Eq. (A8). Using Eq. (Dd) and after some
manipulations. we obtain

i ‘.\,",o‘»nu
5 — .
L6 S, =33 gew
=8 Y'S™ _15[«‘ T °] . (D10)
N
Then L;ﬁd' becm{i}e:'
~ . ,I'; LHo- BT, --A|0nu
Ay +19(0+9)[0 e ] . oIy
.
;{".‘"'—é I Z ;).-|<e-1"‘°'"°o'-ft,”|.:
T 0T, TALO Ny
Ly 9)[ T 1T ] (D12)
RS i

in REqREDIL) shows that au{f difler qn_ll_\," in the

resonant part.
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