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The transformation devised by Lecomte and Ueda for the study of resonance structures in the multichannel 
quantum defect theory (MQDT) is used to analyze partial photofragmentation cross section formulas in MQDT 
analogous to Fano’s resonance formula obtained in the previous work for the system involving two open and 
one closed channels. Detailed comparison of the MQDT results with the configuration mixing (CM) ones is 
made. Resonance structures and their geometrical relations in the MQDT formulation are revealed and 
classified by combining Lecomte and Ueda’s theory with the geometrical method devised to study the coupling 
between background and resonance scatterings.
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Introduction

Though multichannel quantum defect theory (MQDT) is 
one of the powerful theories for resonances in that it allows 
us to describe complex spectra including both bound and 
continuum regions with only a few parameters, resonance 
structures are not transparently identified in its formulation 
as resonances are treated indirectly.1,2 In order to identify 
resonance terms, special treatment is needed as Giusti-Suzor 
and Fano did for the two channel system by the phase 
renormalization.3 They noticed that the usual Lu-Fano plot 
often obscures the symmetry of the curve in it which is 
apparent when the plot is extended to infinity. The symmetry 
can be brought into the MQDT formulation by using 
the techniques first considered in Ref. [4] which move the 
origin of the plot to the center of symmetry by the use of 
base pair whose phase is shifted from that of the base pair 
(f g) by 卩:

f g) t (f cosnji - g sinn#, g cosnji + f sinn/1). (1)

By this phase renormalization, the diagonal elements of short­
range reactance matrices K become zero and the resonance 
structures are separated from the background in two channel 
systems (Dubau and Seaton also obtained the same results as 
Giusti-Suzor and Fano’s ones from a different approach5).

The generalizations of their method to systems involving 
arbitrary numbers of open and closed channels were done 
by Cooke and Cromer,6 Lecomte,7 Ueda,8 Giusti-Suzor and 
Lefebvre-Brion,9 Wintgen and Fridrich,10 and Cohen.11 Cooke 
and Cromer,12 Lecomte, and Ueda showed that, for such 
general systems, making the diagonal elements of reactance 
matrices K zero can only be achieved with the modification 
to the transformation so that it performs an orthogonal 
transformation of basis functions besides a phase renormal­
ization. We will call this transformation the Lecomte-Ueda 
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transformation hereinafter. Using this transformation, Lecomte 
found the best parameters to describe total cross sections 
shorn of the background part for autoionization spectra for 
general systems. Ueda derived total cross section formulas 
analogous to Fano’s resonance formula for some cases 
including one closed and an arbitrary number of open 
channels. Giusti-suzor and Lefebvre-Brion,9 and Wintgen 
and Fridrich10 did the detailed study for the system involving 
two closed and one open channels and Cohen11 for the 
system involving two closed and two open channels. The 
present paper deals with the system involving two open and 
one closed channels and is thus more restrictive than the 
previous work in this sense. But the present work obtained 
several results which are absent or not dealt in the other 
people’s work. It obtained the partial cross section formulas 
for photofragmentation processes analogous to Fano’s re­
sonance one, which is not trivial since it is generally believed 
that final state distributions described by partial cross section 
formulas contain detailed pieces of information sensitive to 
some features of dynamical couplings. The present paper 
also succeeded in obtaining the complete relations between 
MQDT and configuration mixing (CM)13-16 formulas for this 
concrete examples, the general features of which were studied 
before by Fano and Mies.17-19 We achieved this by refor­
mulating MQDT into the form of the CM theory using 
Giusti-Suzor and Fano’s method so that the Lu-Fano plot 
becomes symmetrical. But the short-range reactance matrix 
K obtained in this way in Ref. [20] was not the kind of form 
considered by Giusti-Suzor and Fano in that its diagonal 
elements are not zero. It means that intra- and inter-channel­
block couplings are not fully separated yet. Making diagonal 
elements of K zero can be done by the method prescribed by 
Lecomte.7 In the present paper, his method is coupled with 
the geometrical method developed in Ref. [21] for studying 
the coupling between the background and resonance 
scatterings so that the hierarchical resonance structures are 
fully investigated and the MQDT reformulation is made to 
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match fully with the CM theory.
In the following section, we will summarize the trans­

formation intro- duced by Lecomte and Ueda with some 
additions needed for the present work. In the next section, 
we consider the short-range reactance matrices in various 
channel basis wavefunctions and investigates the resonance 
structures using the Lecomte-Ueda transformation. After 
that, the photofragmentation cross sections and relations 
between those and the CM ones is derived. Finally, the 
summary and discussion is given in Section 5.

The Lecomte-Ueda Transformation

We may describe the Lecomte-Ueda transformation using 
either standing-wave channel basis functions or incoming­
wave channel basis functions. Both descriptions have their 
own advantages. The former is suitable for the study of the 
reactance matrix K which provides much simpler description 
than the scattering matrix. The latter, on the other hand, is 
suitable for the description of the photofragmentation cross 
sections. We will give both descriptions.

A. The Lecomte-Ueda Transformation in Terms of 
Standing Waves. Lecomte and Ueda considered the trans­
formation in which the basis sets are not only phase 
renormalized but also transformed by an orthogonal matrix 
W. Let us denote the regular and irregular pair (①fi,①gi) at 
R > Ro as (Q, Oi). The Lecomte-Ueda transformation 
changes this pair to (OfO )s

°' = £(OWScosnui - 허W"Sin찌丄i),
J

& = 2(q W”sinnu i + 爲 Wj cos n,) (2)
J

so that the standing-wave channel basis functions

% = £(软ik - OK), R > Ro (3)
i

are transformed to the new ones

%' = £(Q '如-爲'K ik), R > Ro. (4)
i

① i in Eqs. (2) and (3) is the wavefunction describing all the 
motions in the i-th channel except for the one along the 
coordinate R in which fragmentation takes place and Ro is 
the value of R beyond which channels are decoupled. The 
transformation relation for the reactance matrix K is given in 
matrix form by

K = (W‘TKWsinnu + cos찌!) 1 (W‘T)KWcos찌! 一 sinnu)

(5)
and the one for the wavefunctions by

%k' = £%【W( cosnu - sin 까火')]* (6)
J

If W is the unit matrix, the transformation is reduced to the 
one by Giusti-suzor and Fano. On the other hand, if the 
phase renormalization is not done, i.e., ui = o the reactance 
matrix and wavefunctions transform in matrix form as

K= W⑺KW,
中'=% W. (7)

Besides the reactance matrix K, another type of reactance 
matrix k is considered by Lecomte. If we consider the short­
range scattering matrix S corresponding to K, it is related to 
K as

S = (1 - iK)(1 + iK)-1, (8)

where exp(-2iS) instead of exp(2iS) is used for S with the 
consequence of i's being replaced by -i from the usual 
formula of S in Eq. (8) as our interests are in photo­
fragmentation. Let us consider the partitioning of S:

(一 一、頌oo Q-OC
S = S S , (9)

Sco Scc \ 7
with indices c for closed channels and o for open channels. 
The Kc matrix is defined using the submatrix Sc as

Scc = (1 - iK)(1 + iK )-1. (10)

From the definition, we can express Kc in terms of the sub­
matrices of K as

Kcc = Kcc - Kco(-i + K°°)-1Koc. (11)

The Kc matrix is an efiEective K matrix when open channels are 
not observed in photofragmentation and can alternatively be 
obtained by setting the coefficients of outgoing waves in open 
channels to zero following the prescription described in Fano’s 
book22 where the coefficients of incoming waves are set to zero 
as scattering is considered. Lecomte noticed that this Kc matrix 
transforms under the restriction of Wco = W°c = 0 as

cc rrrcc(T) cc TT7cc c c1
k = (W k w sinnu + cos nu )

x (W"c(r) Kcc Wccos nuc- sinnuc). (12)

Now consider the eigenchannel wavefunction % 'the 
physical reactance matrix K which can be obtained as a 
superposition of % J of Eq. (4) as

%p = £ %Zkp cos% + £ %ZJcos俄 (13)
k e P k e Q

and satisfies the boundary condition at R — 8 as

%pj £ e‘8jk -爲'KQTkp' cos 爲, (14)
j k e P

where P and Q denote the sets of open and closed channels, 
respectively, Sp' the eigenphase shift for K and fis'the 
accumulated phase shift in the k-th closed channel.23 Now 
we want to make Eq. (13) satisfy the boundary condition 
(14). For that purpose, let us first consider the form of Eq. 
(13) in R > Ro：

%P = £O' Zjp，ocos 君
J e P

-6/(K°oZocos3f + K'occosfi'Z)jp]

+ £ [爲'Z허cosfi.,
J e Q

-6/(K心cosfiZ,c + K,coZ,ocos3f).p]. (15) 
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The coefficient of the exponentially rising term of the second 
sum on the right-hand side of Eq. (15) should be zero. The 
closed-channel forms of 6； and Obtained from those of f 
and gj in Ref. [23] are given by

_ _ m； _ _ _ — „
6j = 2i G q l—— ① i [ -。£ Wij cos (& + 짜丄j)

qnK

+ D?fi W； sin(& + 叫)],
(R > Ro)

6； = - £ i 6 q 匚--0 [Df+ Wijsin(& + 짜丄j)
qA[ nK J J

+ D；f「W>s3 + 卵)], (16)

with f~ which are introduced to denote exp(± ikR) respec­
tively, for the open channels but become exponentially de­
creasing and rising terms exp(+K；R), respectively, for the 
closed channels [k =凶=JZmJE - E)]. Substituting Eq. 
(16) into Eq. (15) and setting the coefficients of the ex­
ponentially rising term to zero, we obtain

(Kc + tan0w')cos# Z,c = -K “7° cos 廿， (17)

where tan^w' is defined as
tan0W = (cospwcccosn/ic - sin^WccsinnJuc) 1

x (sin^W*cosnuc + cospwccsinn/ic) . (18)

The mass mi in Eq. (16) denotes the reduced mass for the 
motion along the coordinate R in the channel i and k is 
defined as J2mJE〔 - E) with the energy E of the system 
and the core energy Ei in the i-th channel. Comparison of the 
asymptotic form of 中J given in Eq. (14) with the open 
channel part of Eq. (15) yields

K'ooZ'ocos5 + K'occos 步 Z‘c = K T cos S'. (19)

Inserting Eq. (17) into Eq. (19), we obtain
K = K'oo - K'oc(K,cc + tangw，)-1 K,co, (20)

which is different from the well-known relation

K = K'oo - Ko(K心 + tan俱)Tk，co, (21)

in that tan。' is replaced by tfSw'(18). Two relations 
become identical when Wcc is the unit matrix. Notice that, in 
order for W? to be eigenchannels, the following relation 
holds from Eq. (14):

T'⑺ K' T' = tanS'. (22)

Therefore the meanings of tan S' and Ts eigenvalues and 
the collection of eigenvectors of K still remain the same. 
The eigenvalues and eigenvectors of K may be obtained 
alternatively by solving the so-called compatibility equations 
given in matrix form as

(Ko - tanS')Z'ocosS‘ + Kf°ocos步ZfC = 0, 

K&°cosS' + (Kc + tan^w 八)cos 步 Z = 0, (23) 

which are obtained from Eqs. (17), (19), and (22).
B. The Lecomte-Ueda Transformation in Terms of In­

coming Waves. When we consider the photofragmentation 
cross section formulas, it is much more convenient to use 
incoming-wave channel basis functions instead of standing­
wave ones. To handle incoming-wave channel basis functions, 
usually the basis pair (f , fi } is used instead of {f, gi}. But, 
f~ are just exponential functions defined as exp(± ikR) with 
ki = J2mJE - Ei) and do not directly correspond to the 
pair {fi, gi}. (When the i-th channel becomes closed, ki 

becomes iK.) It may therefore be a good idea to introduce 
the basis pair which directly corresponds to it. Let us define 
this basis pair as Q± which is related to fs

1 —
2i

12mi i
---- i e
顿k (R > R0) (24)

1
S 2i

l2mi -i
---- i e

시 砥

for open channels and

爪+_ 1 m〔邙言门”丄s-L-、
©i 5」一二e (Df + l^i fi ),2 nKj

_ 1 [m~ * + "厂 \
©i = 5 J—二e (Df - lDi fi)，2吋nK

(R > R0) (25)

for closed channels. The relation between them is given by 
+ * -

©i = 一 ©i. They are related to the basis pair {fi, gi} as

©； = 2 岳 + igi )，

©一 = 2(-fi ; igi), (26)

regardless of open- or closed-ness of channels. The phase 
shift n in Eq. (24) is the one for the base pairf and gi for an 
open channel.

The Lecomte-Ueda transformation changes this pair {① i©i*, 
①i©i-} into a new one. Let us denote the old pair as { j 成} 
and the new one as { %•, &； }. Then the relation between 
two pairs is given by

&； = £6；Wije'叫,
i

&；=日 WjT 叫. (27)
i

As W is real, we have the relation 6； = -6；. With this 
transformation, the incoming-wave channel basis function

'砂】-=£0(©:S - ©一Sik), R > Ro (28) 
i

transforms into
中U = £(6，；Sik - ©'；SiQ, R > Ro. (29)

i

By inserting Eq. (27) into (29), we find the transformation 
relation between two wavefunctions as

中，(-)=砂(-)we"* (30) 
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and the one for the short-range scattering matrices as

S' = e"中 W(TSWe打甲. (31)

It may be easily checked that the relation between the 
incoming-wave and standing-wave channel basis functions
is invariant under the Lecomte-Ueda transformation, i.e.,

(32)中 k' = £中'湼(1 + iK'%.
i

Notice that the summations in Eqs. (28) and (29) include 
closed-channel contributions which can grow exponentially. 
The physical solutions satisfying the boundary conditions at 
the asymptotic region can be obtained by the superposition 
cf M>/(-) oC of T k as
w'(-)— w(-), ，一 V w'(-),'o 丄 w'(-),,cT j = £T k Akj = £ T k A kj + £ T k A kj (33)

k k e P k e Q

so that they take the following form in the asymptotic region

中'湼7£（们爲-昨為'） （34）
i

and the coefficients of the exponentially rising terms become 
zero. The incoming-wave boundary condition is satisfied 
when

A 2 = 1,

S 'ooA/O + S ,ocA 'c = S', (35)

which yield the solutions

A 'c = -(S,cc-e21Pw，)-1S，co, (36)

where exp (2 i^w') denotes

e지“' = e"' (Wcc )(T )e2 '°W°ce'짜'. (37)

From the solutions (36), the physical scattering matrix is 
expressed in terms of the submatrices of the short-range 
scattering matrix as

S = S'oo - S，oc(S'cc - e2缶 j-1S，co. (38)

In Appendix A, it is shown that K of Eq. (20) can be derived 
from S' of Eq. (38).

With the expansion coefficients obtained in Eqs. (35) and 
(36), Eq. (33) can be written as

W'jT =中'jT - £ 中'？)[(武-e2'"W，)TS，co]kj. (39) 
k e Q

Inserting Eqs. (A1) and (A3) in Appendix A, A 'c of Eq. (36) 
may be expressed in terms of the submatrices of the short­
range reactance matrix K as

A" = (1 + iK,cc)( tan丿8w' + 芒尸(i + tan 丿8矿')

x (1 + i Kc)-1K'co(-1 + K'oo)-1, (40)

which is rather complicated. When Wc<c is the unit matrix, 
Eq. (40) becomes simplified as

A 'c = (tan# + i)(tan俱 + k心K 心。(-i + K 'oo)-1 (41)

and Eq. (39) becomes

W'jT = T'j-) + £ T'k-)[(tan俱 + i)
k e Q

x (tan# + Kcc)-1K'co(-i + K'oo)-1 ]kj. (42)

It can easily be shown that similar equations to Eqs. (30) 
and (31) hold for the physical incoming wavefunctions 
T'j-) and physical scattering matrix Sn matrix form as

W（-）=中（-） W00/"* o (43)

S' = e'M W°° (T)S Wooen* °. (44)

If the original matrix S is symmetric, its transform given by 
Eq. (44) is also symmetric when W is real and orthogonal. 
The reality of W also ensures that the transform of the 
reactance matrix given by Eq. (5) is real. S(T) = S implies that 
the related processes are invariant under time reversal. Thus, 
with W real, the Lecomte-Ueda transformation conserves the 
time reversal invariance. Notice that channel basis functions 
cannot be used to describe a fragmentation 步炭。、、 

when a particular channel is observed at the asymptotic 
region as they are given by superpositions of fragmentation 
processes. Thus channel basis functions 中'「)which are 
obtained from the Lecomte-Ueda transformation cannot in 
general be used to calculate partial photofragmentation cross 
sections. In this regard, wavefunctions obtained from the 
fragmentation channel basis functions by the phase renor­
malization alone are different and can still be used for the 
calculation of the partial cross sections. Wavefunctions 
produced by the Lecomte-Ueda transformation including an 
orthogonal one, however, can still be useful for other pur­
poses. They can be used to find eigenchannel basis functions 
for the scattering matrix containing only a resonance con­
tribution. They can also be used for the calculation of the 
total cross sections as Lecomte and Ueda did as channels are 
not detected separately in the measurement of total cross 
sections.

Before ending this section, let us briefly comment on the 
matrix §搭.The right-hand side of Eq. (37) is a product of 
unitary transformations and is itself a unitary transformation 
and thus can be expressed as the form given on the left-hand 
side, where §W is the Hermitian matrix and no longer 
diagonal. Though it is difficult to show that the right-hand 
side of Eq. (18) is equal to the tangent function of this matrix 
Pw' it should be so as we can derive one from another as 
shown in Appendix A.

C. The Restricted and Successive Lecomte-Ueda 
Teransformation. Lecomte and Ueda’s transformation is 
too general for most purposes. Many useful conclusions can 
be drawn with more restricted transformations. Throughout 
the paper, orthogonal transformations will not be allowed 
between closed and open channel basis functions, i.e., WC()= 
Woc = 0. With this restriction, Lecomte-Ueda transformation 
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is described by 卩°, ]f, Woo°, Wcc and will be denoted by 
T(찌』0, 짜R Wo(), Wcc). Let us first consider the orthogonal 
trans- formation which is allowed only among open channel 
basis functions, i.e., let us consider the transformation T(짜f°, 
짜f, Wo°, Icc) and the problem of separating out the intra­
channel-block couplings from the inter-channel-block ones 
in the reactance matrices. The way to separate those 
couplings out in the reactance matrices is to let basis 
functions have intra-channel-block couplings as far as 
possible so that they are removed in the reactance matrices 
as far as possible. Or, adjust the parameters in the Lecomte- 
Ueda transformation so that intra-channel-blocks of 
reactance matrices become zero as far as possible. Lecomte 
showed that this can be achieved up to the level that 
K"° = 0 and Kcc = 0 [i = 1,…Nc (the number of closed 
channels)] with the transformation T(짜i°, 자f, Woo, Icc) 
when there are no degenerate levels in closed channels. Let 
us briefly describe this.

The submatrix Kf°° cK'be related to the unprimed 
quantities in the same way as the whole Kf matrix is related 
to the whole K:

K。=(讨(脱火族俨。sin n/zo + cosnuo)T

x ( W^TooK"ooWQocosn』o - sinn/o) (45)

if we introduce the K"°° matrix defined as

K"°o = Ko - Kocsinn/c(Kccsinn/c + cos찌f) -KCO.
(46)

The right-hand side of Eq. (45) may be made zero by simply 
choosing the transformation parameters W^(o and / so that 
Wo(o(TTK〃。o Wo(o equals tann/1o. But notice that the definition 
of the K"oo matrix requires the values of /c in advance. Of 
course, K°° = 0 regardless of the values of /c as far as 
Wo(o(T)K"OOWO equals tann니0. In other words, we have 
freedom in choosing the values of 니c. The best way of 
choosing their values is, of course, to make the elements of 
K必 zero as far as possible. If K"。= 0, the corresponding 
Kcc in Eq. (11) becomes

k心=K心-iKgKO (47)

and we have K,cc = ^(k"cc). If we apply the Nc conditions 
of 浏K：) = 0 (i = 1, ..., Nc) to Eq. (12), we have Nc 

equations for 니 which completely determine 니c. That is, 
with the conditions of zero diagonal elements of ^(Kcc) all 
the transformation parameters of T(짜!0, 짜R W?o, Icc) are 
determined and no freedom is left in the transformation. If 
we consider the system involving only one closed channel, 
the complete separation of the intra- and inter-channel-block 
couplings expressed as K,o° = KfCC = 0 is achieved with 
this transformation T(짜니0, 짜f, Woo, Icc).

Let us limit the discussion to the system involving only 
one closed channel for the time being. In this case, the 
contribution of the closed channels to the physical wave­
functions (42) becomes extremum at tan步 + ^(Kcc) = 0 
at which resonance takes place.24 (We will follow other

people's convention of calling this extremum point the 
‘pole’. It is different from the mathematical term ‘pole’ 
which includes an imaginary part as well.) Thus the 
condition 飛(。质匍 =o0an indicagh= that
it is also the condition for positioning the resonance center to 
the origin in the Lu-Fano plot. But, here, it should be noticed 
that ^(Kcc) = 0 does not mean K心 =0 . They are 
identical only when K/OO = 0 . As we shall see, the case that 
K'oo is not a zero matrix but ^(Kcc) still remains zero 
plays an important role in studying the resonance structures. 
Since the pole position is moved to the origin in the Lu-Fano 
plot when 31( kscc al=tDis kind of representation 
the “resonance-centered representation”. As stated above, 
not only KK also can K^inade zero with the 
transformation T(짜!0, 짜f, WR。, Icc) when there is only one 
closed channel. In this case, both 3(KCC) and 3(K°°) 
become zero and, as will be discussed more in detail later, 
the rank of the physical reactance matrix is one, which 
indicates that only one channel basis function shows a 
resonance behavior while others do not. In other words, the 
resonance and background contributions are completely 
separated. We will call this kind of representation the “pure- 
resonance representation”. If there are more than one closed 
channel involved, the pole position is approximately 
obtained at det [tan^z + 3(KCC)] = 0 .7 In this case, 3(KCC) 
=0 means n, G *an号=0 and resonances are centered. 
Further discussion on this problem is beyond the scope of 
the present paper.

Let us next consider the successive Lecomte-Ueda trans­
formations. At first, the Lecomte-Ueda transformation starts 
from the base pair for a single fragmentation channel. 
Generally, the base pair after the transformation does not 
belong to a single fragmentation channel and becomes 
unsuitable for the description of partial cross sections. But, if 
Lecomte-Ueda transformations involve only phase renor­
malization, the base pair after the transformation still remains 
in the same single fragmentation channel and can thus be 
used for the description of partial cross sections.

It is sometimes useful to consider the single Lecomte- 
Ueda transformation as composed of two successive Lecomte- 
Ueda transformations. Successive Lecomte-Ueda transfor­
mations considered by Lecomte are the ones that the first 
transformation only changes the base pairs for open chan­
nels followed by the change of the base pairs for closed 
channels. We can easily show that these successive Lecomte- 
Ueda transformations are equivalent to a single Lecomte- 
Ueda transformation. For example, if the first and second 
Lecomte-Ueda transformations are T1(찌니0, 0, W°°, Icc) and 
T2(0, n니c, I°°, Wcc), respectively, then T2T1 is equal to the 
single one given by T(찌니0, 짜R W°°, Wcc). In this case, the 
order of transformation is commutable, that is, T2T1 = T1T2. 
There is another case where a single transformation can be 
easily decomposed into two successive transformations. 
Actually, all the Lecomte-Ueda transformations can be con­
sidered as composed of two successive transformations, first 
by an orthogonal transformation and then by a phase renor­
malization by n니.
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Applying the Lecomte-Ueda Transformation to the K 
Matrix for the Two Open and One Closed Channel 

System

Recently, for the system involving two open and one 
closed channels, we reformulated MQDT into the forms of 
the CM one, where we find that the resultant reactance 
matrix still keeps non-zero diagonal elements even when the 
axes of the Lu-Fano plot are translated so that the plot 
becomes symmetrical.20 This contrasts with the system 
involving two channels studied by Giusti-Suzor and Fano, 
where the symmetrical Lu-Fano plot is obtained for the 
reactance matrix whose diagonal elements are zero. This 
contrast can be studied by using the Lecomte-Ueda trans­
formation. Before doing this, let us briefly describe how 
such a strange reactance matrix is obtained. The physical 
scattering matrix S can be written as a product of back­
ground and resonance terms, i.e., S = S0Sr. The background 
scattering matrix S0 may be expressed in matrix form as S0 = 
U0exp(-2iS0)U0(T) with the background eigenphase shifts <50 

(i = 1, 2, ...) and the orthogonal matrix U0. The resonance 
scattering matrix likewise may be written into the form exp 
(-2i5rPr) for an isolated resonance where 5 is the phase shift 
due to the resonance and is defined by -cot5r = 2(E-E0)/r 
with the resonance energy E0 and the half-width r. Pr is the 
projection matrix into the resonance eigenchanenls.21 Let us 
consider the transforms U0(T)SU0, U0(T)S0U0, and U0(T)SrU0 
and denotes them as S, S°, and & respectively. If we restrict 
the number of open channels to two, the orthogonal matrix 
U0 is expressed with one parameter, say 00, as exp(-iQ)oy/2) 
and the transforms 5° and & may be expressed in terms of 
Pauli matrices as21,25

na = Ry(Oa)z, (52)

cot 5a = -cotA°2
£a - (53)
島+ 1

with 初= -cotOr/cosA°2 & or 0a are defined as

sinA°12 °
% 三-cotOa = --—0-- (cot5r + cotA12cos Or) . (54)

The original scattering matrix S differs from S only in that 
na is replaced by nijice Ry(0°)na

ii
S = /허%严 = e-诚 + 第 e-'gna' (55)

It is shown in Ref. [21] that of Eq. (51) can be obtained 
from S° and & of Eq. (48) by making use of spherical tri­
gonometry for the spherical triangle shown in Figure 1. In 
Ref. [2°], Giusti-Suzor and Fano’s method of phase renor­
malization is used to transform the physical scattering 
matrix of MQDT into a form of CM given in Eq. (55). This 
reformulation is not a simple task if three channels are 
involved since eigenphase shifts do not transform linearly 
but in a rather complicated way by phase renormalization, 
described by the spherical triangle in Figure 1. The sum­
mary of the results of Ref. [2°] is described in the next sub­
section.

A. Translation of the Axes in the Lu-Fano Plot. MQDT 
can be reformulated so that its physical scattering matrix S 
takes the form (55). This can be achieved when the short­
range reactance matrix can be written as2°

0 -i(5°1 + A^z)
S = e ,

一认5r1 + Sr^' nr')
S’ = e (48)

where 5°三 5° + 50, A°2 三 5° - 5- and n' is defined as

nr' = Rz (-A°2 )Ry(0r )z

=(sin Or cos A%, -sin Or sinA%, cos 0) (49)

with Or defined in terms of half-widths「and「2 as

cosOr

sin Or 三 (5°)

Ref. [21] obtained

Figure 1. The spherical triable formed by the three vectors z, 
nr, and n is shown, which is used to show the geometrical 
relationships among various eigenchannels employed to study 
resonance structures. Also shown is the spherical triangle formed 
by the three vectors Zo, z, and n, which is used for the Gailitis 
average of the partial cross sections.

s = s°sr = e~i(  ̂+ 祀)e~i A°2aZe~i5rff-nr'

=e「'(5° + 5 板5 (51)

where na and 5 are given by

「1 -「2 

r 1 + r 2,

2届r
「1 + rj
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.A?2 八 tan-^cos^g

.A02 ■. 

tan-Tj-sin^g

■ A02 — tan--2-sinOo

.A02 .

-tan-^-cos^o

cos2 (Or +。0)

K =

sin2(Or + Oo)

己 1小 …—■으3"cos2(Or + Oo) 
△12 2cos---2-1--2
危 .1

一으Ssin* (Or + Oo) A12 2
cos---2-1--2

g2tan△으cosOr

(56)

where : is defined by

产—tr (K ocKco)
s = -口可 (57)

—1 . …. ................................. ..... ，.二In this representation, the physical scattering matrix &s 
shown in Ref. [2o] to be related to the scattering matrix
S(CM) of the CM theory given in Eq. (55) by

S = e *S(CM). (58)

S of MQDT can completely be made equal to that of CM by 
phase renormalization but is left in the present form in order 
to make the Lu-Fano plot symmetrical. This point will be 
explained shortly afterwards. Let us denote the solutions of 
the compatibility equation

Koo - tan<5 Koo

K c° Kcc + tanj3
(59)

for this system as〜tan&〜and tan 5-. In this formulation, the 
eigenphase sum &( = 5+ + S-) is made identical to the 
phase shift 5 due to the resonance in conformity with 
Simonius and Hazi’s theorem26,27 by imposing the condition

二 ，一2 二
tan& = S /tan0, (6。)

which holds when Ksatisfies

tr K00 = o, Kcc = |K|. (61)

This K matrix is obtained from the original K matrix by 
only allowing the phase renormalization. Here, it should be 
noted that the Lu-Fano plot for the system involving two 
open and one closed channels is composed of two curves (& 
5+) and (§, 5-) However, the graph we want to make 
symmetric in the new coordinate system is not those two 
curves. Those two curves are not suitable for that purpose 
because of the mutual repulsion which makes both graphs 
complicated. The one we want to make symmetrical is (& 
5) as the eigenphase sum in CM shows the same behavior 
as that in a sin이e open channel problem26,27:

8^( CM) = 5^ - cot-1 "E- E = g + 5. (62)

To make the Lu-Fano plot symmetrical, the term 5 of S(CM) 
is removed in 因s shown in Eq. (58). Let 짜£3 and 찌丄£ denote 
the shifts to § and 5, respectively, so that the new curve 
(& &) is symmetrical. Their values are obtained in Ref. [2o] 
as

2 (trKoo[KcctrKoo - tr( KocKco)] 
tan (2 짜I,) = +(1-K-씨)(K"-K으)}

(trKoo )2 - [ Kcc trKoo - tr (KocKco)]2 

+ (1 - |Koo| )2 - (Kcc - |K| )2

and

2 ((1 - \Koo\) tr Koo + [ K°°trK°°

,八 、 -tr(KocKco)](Kcc -因)}
tan( 2찌圮 = (1-ko|)2 + (Kcc-|K|)2-(trKoO)2.

-[Kcc trKOO - tr (KocKco )]2

Using the relations

trKOO[Kcck - tr(KOKc)]
q“ k" + (1 - |KOO|)(Kcc - |K| )
g)= (E-lEtrK。。)2 '

|Kcc|2 =(囚-Kcc)2 + [KcctrKOO - tr(KocKco)]2

(63)

(64)

(65)

(66)

(I Koo| - 1 )2 + (trKoo )2

Eq. (63) can be rewritten as

+ g 、2 浏 Kcc)tan (2 n£ 3) =-------스
1 - cc| 2 .

K

If we recall the transformation relation (12) for Kcc, it is 
easily checked that Eq. (66) is equal to 丸(kcc) = o. The 
latter is true for the K matrix given by Eq. (56). Actually k 
corresponding to Kis obtained as

Kcc = -if (67)

and is purely imaginary.
cc

We earlier started that the representation where 沉(k )= 
o belongs to the class of the resonance-centered representation. 
Let us repeat it by restricting the argument to this specific 
representation, The pole position in Eq. (42) and observables 

cc
are given by the root of the real part of tanp + k for the 
one closed channel system, i.e.,

cc
tan§ + 浏k ) = o. (68)

If we want the pole position becomes the origin of the Lu-Fano 
plot (§, 5x), then 丸(Kcc) should be zero so that § is zero at 
the origin. Thus the value of 卩3 given by Eq. (63) is the one 
which moves the origin of the Lu-Fano plot to the pole position.

B. The Matrix in the Background Eigenchannel Basis. 
The short-range reactance matrix K, given in Eq. (56), 
yields the Lu-Fano plot where the pole position is the origin 
but the matrix still has non-zero diagonal elements, meaning 
that intra- and inter-channel-block couplings are not fully 
separated yet. Notice that, in order to obtain KK , only phase 
renormalization is used. But, Lecomte and Ueda previously 
showed that making the diagonal elements of reactance 
matrices zero cannot be achieved by phase renormalization 
alone. We have to include orthogonal transformation as well.

Before considering the Lecomte-Ueda transformation 
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which makes the diagonal submatrices Ko and Kc zero, let 
us first consider getting rid of Oo from the reactance matrix 
K . The way of doing this is to transform the basis functions 
from the background fragmentation ones to the background 
eigenchannel ones as we will see below. It corresponds to the 
transformation T[0, 0, 0, exp(-iOoQy/2),鬥.(Previously, the 
notation T(찌j°, 짜R W)o, Wcc) is used to denote a Lecomte- 
Ueda transformation. A little modified notation T(찌丄 1, n/12, 
nfi3, W°o, Wcc) suitable for the system involving two open 
and one closed channels may also be used. Since they have a 
different number of arguments, no confusion may arise in 
using both of them at the same time.) If we use the double 
bar for the transformed quantities, the transformation 
relation between the reactance matrices are given by 
K = W KW according to Eq. (7), where W is given by

(— )
(

1 )

W =俨 0
=

-i 200%y 

e 0
0 W°c 7 .0

Icc
(69)

K= =

It can be calculated as

i2"y~oo -i20。％ i2"y~oc 

e K e e K
3'即 Kcc

(70)

Using the Pauli matrix form of K°° in Eq. (56) given as

K = tan2 A02ff-[ Ry (0。)z], (71)

the K matrix may be rewritten as

、A0
+ A12 tan---2-- 0 g 1n

—노--「海2 9r
A12cos---2--

=(一) =(_) ~ (-) ~ (-) i a 「弋
(中1),中2 ))=(中1 ,中2汇2哄，

早3-)=吊3-). (73)

From Eqs. (43) and (44), the transformation relations between 
physical incoming wavefunctions and scattering matrices are 
given in matrix form as

早(_)=早(_>2秘=早(_)u°,

= 노노0。% & -捉0% 夕 (T)&"0 一胳。na ci、S = e2 0 yS e 2 0 y = U S U = e e , (74)

where exp(-i0)oy/2) is identified with the original matrix U0 
which diagonalizes the background scattering matrix S0 of 
CM. Since S=is identical to S of CM except for a trivial 
scalar factor, S is identical to S except for the trivial factor. 
Since the background scattering matrix in U0(T)SU0 of CM is 
diagonal, the incoming-wave channel basis functions (73) 
obtained from the Lecomte-Ueda transformation T[0, 0, 0, 
exp(-ift)cy/2), Icc] are background eigenchannel basis functions.

C. Complete Remov지 of the Background Part in K. Let 
us now consider obtaining the reactance matrix whose diagonal 
elements are zero as considered by others. Inspection of Eq. 
(72) shows that this can be achieved by removing 쌔沖 

K . The removal can be accomplished by two consecutive 
Lecomte-Ueda transformations T1(0, 짜R I。。, Icc) and T2 

(찌f, 0, Woo, Icc) considered by Lecomte and described 
before. T1 is built to make ^( K'cc) zero. We first notice that =c cwe do not have a use for T1 as the real part of k is already 
zero. In other words, T1 is the identity transformation. The 
parameters 卩。and Wo for T2 are defined as eigenvalues and 
eigenvectors of K〃oo of Eq.=(46). Since T1 is the identity 
transformation, K胃 equals K°°. That is, they are obtained 
by diagonalizing Ku K^lready diagonalized. Thus
W^() is the unit matrix and 卩。are given by An/ 2 
-A./2. Let us denote the reactance matrix obtained by this 
transformation T(A02/2, —A%/?, 0, I”, Icc) as K. The only 
nonzero submatrices in K are K and Knd calculated as

K = 0
A0

+ A12 
-tan----

■흐「 Mg Or

A12cos---
2

Kc° = Kco cos 찌卩。= Kco cos； A02 = (gcos； 0r, ^sin^O^,

(75)

■흐。cos2 9
A12 cos-— 2

r
-트in29r 

cos---2--

A0
匕2 A12 n
g tan-^-cosOr

(72)

Koc
oc

&海2 Or

& sin2 °r

(76)

Notice that 0。in K is removed in Knd included into the 
transformation. The transformation T[0, 0, 0, exp(-i0)oy/2), 
Icc] causes a similarity transformation in the reactance matrix 
as K = WTK W and therefore eigenvalues of the reactance 
matrix and the solutions of the compatibility equation (23) 
are not changed by it. Accordingly, the Lu-Fano plot remains 
invariant under the transformation.

According to Eqs. (7) and (30), only open channel basis 
wavefunctions are transformed by this transformation. In­
coming-wave channel basis functions, for example, are 
transformed as

Overall, the K matrix is obtained as
、

0 0 &海2 °r

K = 0 0 gsin： Or

&cos2 9r
. 2

&sin2 °r 0
丿

(77)

Note that the parameter § for the K matrix is not changed by 
the transformations and remains the same as the one § = §
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= P + 짜以 as the transformations do not change the phase 
shift for the closed channel, i.e., we have

P = P = P = P + 짜、 (78)
The physical K matrix corresponding to K obtained as

K = K°° - Koc(tanP + Kcc)-1Kco

the short-range reactance matrix K so that it contains only 
the inter-channel coupling parameter : by separating out the 
geometrical parameter Or. This can be achieved by the 
orthogonal transformation W given by

( 、
一W = e ' 旳 0 (87)

tanP

( .A 
cos 2 6r sin2 ^rcos2^r

sin； Or cos； Or sin* Or

7

-U- s (1 + G - nr), 
tanp 2

(79)

where n is defined as

n = Ry(Or) z = z cos Or + x sin Or.

Eq. (79) can be rewritten as

K = tan ^r Pr,

where we have made use of

(80)

(81)

and

tan ^r = —스= 
tanP

(82)

which can also be expressed as T [0, 0, 0, exp(-iOr0y/2), Icc]. 
Let us denote the reactance matrix obtained by this trans­
formation as Kr. Then, it is easily obtained as

( 一、
0 0 :

Kr = 0 0 0 . (88)
E 0 0

Since the transformation does not include a phase renor­
malization, we have

_ — ~
Pr = P = P. (89)

Using the relation Sr = (1 - iKr)(1 + iKr)-1, the short-range 
scattering matrix Sr is easily calculated from Kr as

Pr = 2( 1 + G nr).

Now let us consider S which is related to Kf Eq. (81) by

(83)

S =(1 - iK )( 1 + iK)-1. (84)

By inserting Eq. (81) into (84) and making use of

(1 + i K )-1 = 1 - Pr + e-tSr cos 再 Pr (85)

and the properties of projection operators, we obtain

S = 1 - Pr + e-m「Pr = e~2iSrPr = e~1Sre~1SrG-nr. (86)

Let us quit at this point the further study of the properties 
of the present representation as the present one has only a 
use for providing a means of obtaining more important 
representation, which will become clear later. In the CM 
theory for an isolated resonance, the ‘a’ state considered in 
Ref. [14] plays an important role. The continua in CM for an 
isolated resonance are divided into the ‘a’ state and the 
remaining ones orthogonal to it. Only the ‘a’ state can 
interact with the discrete state to produce resonance 
phenomena while the remaining continua can contribute to the 
resonance phenomena only through the interference with the 
‘a’ state. If we can construct the kind of ‘a’ state in MQDT, 
the MQDT reformulation can be directly compared with the 
CM theory and utilize all its advantages. Let us do this in the 
next subsection.

D. The Matrix in the Resonance Eigenchannel Basis. 
Let us consider further elimination of the matrix elements of

(1二直
0

、 
二스토

1 + 톨2 1 + F
Sr = 0 1 0 . (90)

二스토 0
丄二直

[ 1 + 톨2 1 + F丿

Using Eq. (90), the form of incoming-wave channel basis 
functions useful for the future derivation is obtained as

(中 r「))1 = (O+)1 - 1二호 (o-)1 + 一쓰& (O〉, 
1+? 1+尸

(中")2 = (O+ )2 - (O-)2, (R > R。). (91)

(中")3 = (O+ )3 - 1二W (O-)3 + 으-톨 (O-)1, 
1 + ? 1 + ?

By making use of the formula (30), the transformation relations 
of (中厂))，with other incoming-wave channel basis functions 
are given in matrix form as

中"=甲(-j e*，0 I
[0 1 J

-甲(-)( e-2OG 0 |( e2&1见 0 |( e」2O，G 0
=甲 I 0 1 I 0 Ji 0 1

宀(，，，｝

=甲 e-2O0Gye2A12Gze-2OrGy 0 .
、 0 1丿

(92)
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Or, more specifically, we have

〃W(-)、 /W(-)、/W()W( ^r°y

((*r)1，(*r )2)一(* 1 , *2 )e 2 ry
~ (-) ~ (-) -2%% 2A12^Z -2"y

=(中r 1,中r 2)e 2 e e 2

(中")3 = *3-) = *3-). (93)

Likewise, we can obtain the transformation relation between 
scattering matrices. For example, let us consider the relation 
between Snd Sr. For the later use, if we express sub­
matrices of S in terms of those of Sr, they are given by

qoo _ —」A02b nn —顼代 + 0O)^^~°°，(代 + %)吼 -」시Lb nnS = e 2 12 0e 2 r 0 ySr e2 r 0 ye 2 12 0,

Qoc = e-2 시02皿 e-加 + % 旭S仁

Sco = $%2%「+ %0)%e-2 시02b «0

S = scc, (94)

where the following relation is used:
i 'a 0 i i 0 i

e「2 秘e「2 시12。节2"，= e「2 시/“腿匕 % + %)b，. (95)

Let us now consider the physical incoming wavefunctions 
whose closed channels decrease exponentially in the 
asymptotic region and whose general form is given by Eq. 
(39). From Eq. (90), A^ is calculated in matrix form as

A；=-(萬。-e")-1 Sco

=挎 anB；-(1, 0) ( wit，= B) 
tan0 - ig

=e^(B + 毎) 1” (1, 0) (96)

and the physical incoming wavefunctions *「)become

(中")2 for j = 2.
(97)

The physical incoming wavefunctions (*「))] and (中「＞)2 

correspond to the CM wavefunctions as

((W「))1,(中「))2)= -(e"Sr*a)(CM),中(b)(CM)), (98) 

as shown in Appendix B. According to Eq. (43), the physical 
incoming wavefunctions of the r-representation are related to 
those of the tilde-representation in matrix form as

(—) ' 0
*「)= 中 U2%0%e2시12"甘2%勺. (99)

Let us denote the (j, i)-element of the transformation matrix 
between the physical incoming wavefunctions of 也&-- 
representation and those of the tilde-representation as (*• |
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(*(-)) i). We may similarly consider the (j, i)-element of the 、r ，'/
transformation matrix (中j | (中「) i) between corresponding 
channel basis wavefuncitons. From Eqs. (93) and (99), we 
have

,, 、 i c _ i 人。一 i c _
(中(_)) . I = e*，e2a峪厂2秘 (丄 r )i 丿 e e e

L _lji
(100)

From Eq. (B9), we also have the relation
(一)1 (一)1 i传|(此))i )=国|(矽))i )=。克气此㈠时)),

k 丿 k 丿 (101)

where i = 1, 2 corresponds to a, b, respectively.
The physical reactance matrix can easily be calculated 

from the short-range one given by Eq. (88) as

Kr = tan5rPr, (102)

where the projection operator pr is defined as

Pr = 2( 1 + "z) . (103)

By making use of the relation Sr = (1 - iK)(1 + iKr)-1, the 
physical scattering matrix can be calculated from the 
physical reactance matrix as

Sr = e—'&eT 話z (104)

Notice that this Sr is the diagonal form of the resonance part 
Sr (CM) in the factorization of the physical scattering matrix 
into the background and resonance parts as S = S0Sr (CM) in 
the CM theory. This indicates that Sr is represented in terms 
of the resonance eigenchannel basis functions.

Now, let us consider obtaining the solutions of the com­
patibility equation for this representation. Let us denote the 
solution of the compatibility equation as Then the compat­
ibility equation (23) for this representation yields the follow­
ing equation:

tanS ( tan5 tanB + F) = 0, (105)

which yields two solutions consistent with those of (102) 
and (104), namely, only one of them has a nonzero value 
whose phase is equal to Sr, just the phase shift due to the 
resonance. Expansion coefficients (Zr)ip are equal to (Tr)ip = 
Sip for i g P and become for i g Q as follows28

This may be compared with the Z coefficient for the K 
matrix obtained in Ref. [20] as

Z 3p =
1 / 2

cos；抑 for p = 1, 
2 (107)

sin2%f for p = 2.
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E. Transformation Diagram and Hierarchic지 Structure 
of Resonances. The transformations and resultant reactance 
matrices considered so far can be summarized with the 
following diagram:

I K - ，o ,cc、

- ^(K；c) W 0 T(짜丄» 찌、짜、I , I ?

一 ^(KO<° )W 0

K

^(Kcc) = 0 

g (芝)=-F 

汶 K°o )W 0

「K

^(K)= 0

3(=cc) = -f

一浏=« )W 0

( “)
T 0, 0, 0, e 2어%, Icc
—E-----------------------1

T f 2 A02, -2 A02, 0, To,产

K

汶芝)=0 T (0, 0, 0, e「' 2旳,片
3(芝)=-H______________

汶 K，(，) = 0

Kr

汶 <c) = 0

3( Kcc) = -&2

汶 K°) = 0

(108)

In the above diagram, the last four representations belong to 
the group of the resonance-centered representation as the 
values of ^( k尖)are zero in all of them. Actually the values 
of cc themselves are the same in all four representations as 
Kcc = -ig2. This derives from that the four representations are 
connected by the transformations with no phase renor­
malization and no orthogonal transformations in closed 
channel base pairs so that cc remains unchanged as evident 
in Eq. (12). Generally, ^( k而=0 does not imply 卩:=0 
and Wcc = Icc as can be easily seen from the counts of the 
number of conditions. But if it is assumed to be so as in 
the present system involving only one closed channel, all 
resonance-centered representations have the identical energy 
dependence in wavefunctions (42) and subsequently in the 
cross section formulas. The important thing worth of notice 
related to the resonance-centered representation is that the 
present system has a resonance-centered representation, the 
tilde-representation, which is suitable for the description of 
the fragmentation processes and obtainable from the starting 
representation by the phase renormalization alone.

The last two representations enjoy further zero given by 
^( k° ) = ^( K。) = 0 . If K fCOK f°o < 1, the solution for 
both’s being zero is obtained only when both Kd K,o°
are zero as shown in Appendix C. For this solution, the 
physical reactance matrix K s rank one and thus has only 

one nonzero eigenvalue given by the tangent of the phase 
shift Sr due to the resonance. The representation where a 
reactance matrix has nonzero elements only for Koc and Kco 

submatrices so that the physical reactance matrix has rank 
one was already considered and used by Ueda for obtaining 
a Beutler-Fano total cross section formula in MQDT for the 
systems involving one closed and an arbitrary number of 
open channels.8 Representations showing this behavior were 
called the “pure-resonance representations” earlier in this 
paper. In the two channel system, the translation of the origin 
of the Lu-Fano plot to the inflection point is equivalent to 
finding the phase renormalization so that ^( k ) = 0 and 
^( k ) = 0. For the scycstem involving two open and one 
closed channels, ^( k c) = 0 is still the condition for the 
location of the origin to the inflection point of the Lu-Fano 
plot, but 泓 k ) = 0 is no longer obtained by making the 
Lu-Fano plot symmetrical through phase renormalization.

It may be convenient if each representation has its own 
name. Let us call the last four representations in the diagram 
as the tilde-, double-bar-, bar-, and r-representations, respec­
tively. The diagram shows that the Lecomte-Ueda transfor­
mations among these representations are expressed in terms 
of parameters &), △., and Or which are used before to 
construct the spherical triangle in Figure 1 for geometrically 
representing the coupling between background and resonance 
scatterings in the scattering matrix. Therefore, it may be 
natural to examine the correspondence between the diagram 
and the spherical triangle. Though in MQDT all the open 
and closed channels should be included while only open 
channels are involved in constructing the spherical triangle, 
this is no problem in the current study of correspondence as 
the four representations of our interests differ only in open 
channel parts. The space spanned by open channel basis 
functions for each representation appears as a coordinate 
system in Figure 1. This coordinate system undergoes a 
rotation about the y axis to a new one by an orthogonal 
transformation in a Lecomte-Ueda transformation. It under­
goes a much more complicated transformation by phase 
renormalization as we will see in a particular example shortly 
afterwards. A physical scattering matrix is represented as a 
vector in the space (called the Liouville space by Fano29) 
where the spherical triangle is drawn. In Figure 1, the 
coordinate system corresponding to the tilde-representation 
is given by xcycz。(the X0 axis is not drawn in the figure).
From Eq. (74), we see that na' is transformed to na by T[0, 0,
0, exp(-iO0%/2), Icc], i.e 
tion from the tilde- to

.,na = Ry(-O^a, in the transforma- 
the double-bar-representation. This

means that the coordinate system is rotated about the y0 axis 
by 어). Therefore the z axis of the double-bar-representation 
is equal to the vector z in the figure. Let us next consider the 
transformation from the double-bar-representation to the 
bar-representation. The coordinate system corresponding to 
the double-bar-representation undergoes a rather complicated 
transformation. In order to see what is happening, let us =consider the formula of S from S and then rewrite it as 
follows:
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S = e^e闘气*叫

i0 
-i8r ~2 XQz -iSr^-.

=-iSr -iS。nr

i . 0

、e2 & 峪
i0

n；

(109)
The second equality of Eq. (109) follows from the reverse 
coupling of Eq. (51), that is,

e込：2%e~iSaff- na = e姦。nr' (110)
which shows that the phases are not simply renormalized. 
Actually, eigenchannels which are the very nature of dynamic 
coupling are also changed. Such a change appears as a 
change from n to nThe phase is renormalized from Sa to 
&. The third equality of Eq. (109) indicates that the phase 
renormalization also causes the rotation of the coordinate 
system about the z axis by 一△]》 that is, nr = R^M)nr '. 
The Lecomte-Ueda transformation from the bar-representation 
to the r-representation corresponds to the rotation of the 
coordinate system about the y axis by -Or so that n is now 
the z axis in the r-representation.

Let us end this section with some comments on the above 
resonance structure diagram. The representations in the 
diagram are classified with respect to the structures of the 
short-range reactance matrices K. Short-range scattering 
matrices S cannot be used for this purpose of classification 
as they still keep nonzero diagonal terms even in Sr. It may 
derive from the restrictions scattering matrices should satisfy 
such as the unitarity and the existence of the pole due to the 
resonance. The latter pole structure, visible in Eq. (90), is 
absent in the reactance matrix.18,30 In order to obtain the bar­
representation, we do not have to consider the double-bar­
representation. It can be obtained from the tilde-one by the 
transformation T|dXp&02/2, 一△匕〃， -iO)oy/2), Icc].
Also the r-representation can directly be obtained from 
the tilde-one by the successive transformations T [A12/2, 
-A02/2, 0, exp(-iO°’/2), Icc] T[0, 0, 0, exp(-iOr’/2), Icc].

the transformation T(짜R 0, W(), Icc).
Let us first consider the〜tilde representation. From Eq. 

(56), the submatrix Kfo cKh be expressed as

財。4 1 A。. /lie、K = tan^A.。- n0, (113)

where the vector n0 is defined as

n0 = Ry (Oo) z = z cosOo + x sinOo. (114)

With this K°°, (-i + K°°) ' can be written as i cos(A02/2) 
exp(-iA]2。• n°/2). Multiplying this into the submatrix K 
of K in Eq. (56), the physical incoming wavefunction 
decomposing into the j-th channel becomes

虻=祐+丽） 뿌느

Using the relation

Photofragmentation Cross Section Formulas

Though it is customary in MQDT to use the asymptotic 
eigenchannels Wp to expand 昭-1

(-) (_)Wj = X'W pCP \ (111)
p

it may be more natural to use the incoming waves as 
expansion channel basis functions as in Eq. (42) which is 
reproduced below:

吧-) =W'湼 +
£ W'「)[(tan# + i)(ta耶'+ k心)-1 Kco(-i + K'oo尸咼.

k e Q
(112)

Strong energy dependence】enters Eq. (112) only as a term 
(tan，+ i)(tan0‘ + Kcc) and becomes simpler in the 
resonance-centered representation as (tan，+ i)[tan，+ 
i 3( Kcc)] . As stated before, the term is invariant under

' 2 Or + %「자A
e 一

V.
e

0 < “、 
'12。’ n0

丿1j
(115)

tan，+ i
2,

e~i(，+ 祀) 1 /2 =说
tan，- i g

(116)

it can be put into

~ (-)

Wj =

'此)+ W 3-疽，+第
'2 Or + O。-2 A0 
e e

V

1 / 2 '12。 n
,、 
0

丿1j
(117)

similar to the form derived in Ref. [31] for the two channel 
system. The explicit expression of the last term of Eq. (115) 
is given by

2 (O + g -2 A0。’”。'
e

丿1j
(. — . —

cos2 (O)+ Or) cos2 A12 sin2 (O) + Or )cos2 A12
—

I I ' I I
-icos2(O0 - Or)sin2A】？ -isin2(O° - Or)sin2A】?

1 1 i A0cos-O0cos-Ore 2 12

1 1 Za 0
一sin-OoSin-Ore 2A12

.1 1 _iA0sin；-Oocos；-。占 ^12
2 2 . (118)

1 1 Za 0cos2O0sin2Ore2A12

Now let us introduce the new short-range wavefunctions 
Mj ) and 刷뎌nded by

M㈠=W㈠ + W 3-)[ K (- i+K 尸丘,

N㈠=W；_)-4 W 3-)[ K (- i + K) T] 3j (119)
2

S

so that the square of the modulus of the transition dipole 
moment is expressed into the Beulter-Fano formula:
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(120) 

where T is the dipole moment operator, i stands for the initial 
bound state, and the complex qgives the line-profile for 
spectra and is defined by

q = i
~J),

(N」Ti)
~ (一)..(M( 丿ITi)

(121)

The forms of M㈠ and NiHctions which yield the 
Beutler-Fano formula are the same if the representation 
belongs to the resonance-centered one. In that representa­
tion, the physical incoming wavefunctions are expressed in 
terms of them as

中(-) = M(- 询糜; - n(-) —-■브--—

tan/?/^ -1 tan0/g -1

=e '*(M(-)cos^r + iN(-)sin^r). (122)

Here M(-) plays the role of the background wavefunction in 
the CM theory and dominate the physical incoming-waves at 
the region of no resonance effect where the phase shift & due 
to the resonance is zero. Especially, M-)is related in matrix 
form to the standing-wave channel basis functions belonging 
to open channels as

中0= M㈠(1+ iKo). (123)

Eq. (123) is the contracted form of 中,=与中「)( 1 + iK j. 
with M(-) corresponding to 中j-1. In this case, the 
contractions is made so that M(-) alone measures the partial 
cross section in the region of no resonance, which is attained 
by making the contribution of regular part of closed channels 
zero:

T，/(-) 八+ 寸 八一 oo / 八+ , 八一\「/ 1 , cCC\—1 cCOpMj- = e广 £ 缶四-£ (缶 + 缶)[(1 + s ) S ]i,
i e P i e Q

(124) 

where (0i + e-) is eventually a unitary transform of only 
irregular functions iQgk. Eq (120) may be used to obtain

.__(-) 2
partial cross sections q・(for [(Mj \Ti)| ), ^(q), 3(q), 
and the functional form of tan? as a function of energy from 
the experimental data using the method developed in the 
field of modeling of data.32 For sharp resonances, we may 
use the well-known first-order expansion

1스프旦 = ^二E끄 
w厂一击

(125)

near the n-th resonance to extract En and F„ instead of the 
functional form of tan? as a function of eneigy from the 
experimental data.

In some experimental situations, cross sections averaged 
over resonances are only observable. For this, let us first 
write the square of the modulus of transition dipole moments 
using Eq. (117) with Eqs. (100) and (101) as

时)|2 = j + D3-)(俨项)e面+ Sr 軌嗚)了，

(126) 
(_) (-)

where Dj denotes (中j |T|i). Let us next take an average 
of Eq. (126) over one resonance interval with respect to ?. 
The energy dependence of an interference term is given by 
either (tan? + i)/(tan? - ig ) or its complex conjugate and 
its integral over one resonance interval can easily be shown 
to be zero. Getting rid of the interference terms and utilizing 
the integral j^ (dS/d?) d?/n = J0 d8」n = 1, the energy 
average of Eq. (126) over one resonance cycle is obtained as

〈时)|2〉= |DjT|2 + D 3-)| 2| 史心|2. (127)

Eq. (127) is identical with the result of Gailitis’s formula 
given by1

〈时)|2〉= |Dj_)|2 + 划 ID 3-)|2 (128)
1- N2

as can be easily seen from Eq. (94). S、]2/( 1 - B3』2) is the 
probability that break-up of the resonance gives j and in the 
present form is given by

叫㈠2

2。0 f . 1 
cos --2-- for j=1,

. 2。0 「
sin --2-- for j=2,

(129)

where e0 is defined as the side an이e for /°Q of the 
spherical trian이e AAA0Q in Fig. 1. Notice that the frag­
mentation branching ratio averaged one resonance interval is

20 20determined by cos Or/2 : sin Or/2 where is constant of 
energy and the same for all resonance levels belonging to the 
same threshold. The unaveraged branching ratio varies as a 
function of energy as far as the line profile q and qare 
different.

A. Total Cross Section Formulas and the r-Representa- 
tion. As is well-known, the photofragmentation cross section 
formulas take the simplest form in the r-representation 
which is corresponding to Fano’s ‘abc..’ representation (the 
‘a’ state is also called the ‘effective continuum’). In the r- 
representation, only the process to (剖차洛 the 
resonance behavior while the remaining processes, the one 
to (中厂)2 here, are energy-insensitive. The transition dipole 
moment formula to (W「))] can be expressed into the 
Beutler-Fano form with introduction of (M「))j and (^))； 

defined with the same formula as the one (119) for M ) and 
(-)Nj , i.e.,

")1=(中乃1+捐(中乃3,

(n「))1=(中乃药")3,

(M「))2 = (N")2 =(中")2. (130)
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With these, the elements of the transition dipole moment 
vector to。^가禺・ written as

tion of the angle 缶 defined by

2 
时))1 =(顷)1 Ti) ¥2%,

ta미3/F+i

(D「))2 = ((M「)) 2l Ti) = ((中"시 Ti) ,

cos% = 一븓=2 細q = -7-=
J1+ qr J1+ qr

Eq. (138) becomes

(139)

with the line profile index qr defined as

_ .((n")1ITi) 
qr=i (M而而,

(131)

(132)

In the r-representation, (Mp% and (셔糸臂 stand­
ing waves. From Eqs. (32) and (88), the relation between 
standing-wave and incoming-wave channel basis functions 
is obtained as

(中r )1 =(中")1+ 捐(中")3,

(中r )2 =(中")2,

(中r )3 =活(中尸)1+(中")3.

Comparison of Eqs. (130) and (133) yields

(133)

£ 同T|2 = |((中r)1 ITi)|2 (1+ q2)sin2(缶 + %)
i e P

+ |((中r시 Ti)| 2, (140)

if we take an average of Eq. (140) over one resonance 
n/2interval with respect to &nd use the formula I sin 2

一 一％ . ,一2 2 ' ,一2 2 _ J-n/2 一 .
(8r + Oq) dp/n = (: qr + 1)/[(1 + : )(1 + qr)], we obtain

〈.£p |DjT|2〉=「%(|((中 r )1 ITi )| 2 + |((中 r) 3I Ti )| 2)

(M31 =(中 r )1,

(N")1 = _£ (中 r)3, 

(M「))2 = (N")2 =(中 r)2. (134)

Inserting Eq. (134) into (131), we obtain

+ |(( 中 r 시 Ti )| 2

= |((中 ")1ITi )|2 + |((中"시 Ti)|2 + |((中"舄 Ti)|2

=1-)| Ti )|2 + |(苗」Ti)|2 + 3-)| Ti )| 2, (141) 

which is the expected result from the theorem due to 
Gailitis33 and ensures that total cross sections are continuous 
across the thresholds.

Eq. (138) resembles the well-known total cross section 
formula for photofragmentation in the neighborhood of an 
isolated resonance given by14

% = %(물j + 허〉] CM (142)

2
(_) . . tan。/： +qr(Dr))1 =((中r)1 Ti)匕2

1 tan/3/F+i
(评))2 =((中 r )2! Ti) (135)

with the new formula for the line profile index qr:

_ ((中"对 Ti) 
qr----------r----------

：((中")1 Ti)
(136)

The new formula for qr clearly shows that qr is real.
From Eq. (99), the transition dipole moment vector D 

. 二(-) , . .is D related by the unitary transformation as

n(-) n(-)-'Oo허 —；시02허 —；6허VDr = D e 2 0 ^e 2 12 ze 2 r y

implying that

L) 
r

(137)

£ 时)2 = £ 1(d「시2
j e P i e P

~ c
/, c, “2 , 、2

. .,12(tan。/： + q尸) 丨 .,.2= |(( 中 r) 1 Ti )| 7? 4" + |((览 W T 시 2. (138)
tan。/: +1

...................... ...... ，"2 … .， , With the substitution -cotB for tan。/： and the introduc-

2if we substitute e for tan。/： . In Eq. (142), Ga and Gb 
denote the cross sections to 甲网 respo/CbVely. For
the comparison, let us first relate (中r )1,(中 r )2, and (中 r )3 
with 甲"，甲 ,and ①归,respectively. From Eqs. (91), 
(133), and (B2), we have in R > R()

(中r )1 = (。; )1-*)1+i：[(0; )3 + (O-)」

=甲G+i：[(O+) 3 + (O-) 3],

(中r )2 =甲。)，

(中r )3 = (。+ )3-(9-)3+i：[(9+ )1 + (6-)1]. (143)

From Eq. (B15), we have

J TS느-时)3 -(O-)3]

心이 匸숴2)
,R > R"

n
。* (144)

Then

J +时n __ n--------------- /-三--------------
n(이 广시2 )12 n(이 F시2)

1
二一i[(Or )1+Or)1]----- -  [Or )3 -(恥]

:cos。
,R > Ro

* 
p=nn

(145)
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and we obtain

^E 1
——--—/2 -乙(中r)3 (146)
n^Vk^2) §

Eqs. (143) and (146) tell us that the background parts of 
MQDT and CM are identical but the resonance parts which 
are described by closed channels in MQDT and by a discrete 
state in CM become equal when § become zero. As a result, 
we obtain the approximate equalities between MQDT and 
CM formulas for small § :

((中 r )1 \Ti )=(俨』Ti), (147)

_ ((中 r )3 I Ti) = (^E\Ti)
%=項布-k(K花曲VM =q (CM).

(148)
Notice that the difference between (泌© 1 is an 俨) 
exponentially rising term in i§[(0+ )3 + ©)3] from Eq. 
(143) but its contribution to the transition dipole moment 
vector becomes finite as it is multiplied by the initial bound 
state i. Then in the narrow resonance limit, Eq. (147) is 
expected to hold.

B. Partial Cross Sections and the r-Representation. In 
order to understand partial photofragmentation processes, it 
may be better to express them in terms of the elements of the 
transition dipole moment vector of the r-representation. This 
can be achieved with the transformation relation (137) 
between transition dipole moment vectors. Using the 
transformation matrices (100), we have

Dj = £ (d^),(电㈠ 1('折)，)

i e P

=£ (D「)),&□('「)),)

i e P

l 匸.2 、二(-), (一) 、一 J
& (-) ta미3/§2+qr (中1 |(中")1)((中 r )1 ITi)

(中丿 mi)— -----------------)---------------
-tan3/§ +l ('j \T，)

(中j i(中乃2)((中r 시Ti) 
+------------ --------------------- .

(明Ti) 」

Let us define Pj as

(电尸i(中"mu中")1四) 

p=------------ ---------------------
(明 ITi)

(149)

(150)

in analogous to pdentical to Starace's a*(jE)15) of CM
defined as16

(V「)| 俨久俨』T，) (Pa f(-)1 T，)( cm ) = 挪- 成 --: - - 丿 = --으-는-느, (151) 
(祐 1 Ti) (祐 1 Ti)

where Pa is the projection operator to 俨).Then, we have

(*「)|( 中 ")2)(( 中"시 Ti)
1- P，= (152)

〜(―),, 
也 IT，)

from the identity

山中 ")1)(( 中 ")11+1(中乃2)((中 r「시)电尸=电㈠
(153)

The identity (153) derives from that the transformation 
matrix ('，「尬电辽歸 matrix? )From it
and Eq. (133), we obtain

(|(中r)1)((中")1| + |(中")2)((中乃』)、"

=电尸+ i§('")3((中")11中尸). (154)

Then
(一)

(中，|(中")1)((中 r) 1 Ti ) ，心、
----------- --------------- =，炎, (155) 

(中，ITi)

where a，is defined as

(*W中r「))1)((中"wTi) 小 c

a =------------ --------------------- . (156)
(中，it，)

We finally obtain
."2 /

-(―) ~(-)_ 3 tan3/ § + q7Dj = (中，Ti)(1-i§a)—브----브, (157)
1 tan/3/§2+i

where qj is related to q‘ = i +Pj(qr - i) as

~ qj- i§qr<a
q=一1二§j (158)

and it can easily be shown that

一~一(-), , ，一 ~ (一)，.
('• ITi)(1-i§aj = (Ml Ti) (159) 

whereby Eq. (157) gives the formula identical to the one in 
Eq. (120) as it should be. The parameter Pj is the analogous 
form to the line profile index Pj (CM) for the partial cross 
section in the CM theory defined as qj(CM) = i + Pj(CM) 
[q(CM)-i]. The parameter qj may also be written as

qj = i + pj (qr -1), (160)

with pefined as (Pj - i§aj)/(1 - i§aj Notice that qr 

and qj are obtainable from the total and partial cross section 
measurements, respectively. Then, Eq. (160) tells us that we 
can obtain Pjot (from those two measurements. If § is 
negligible, the line profile indices qj and qj become equal to 
the CM line profile qj(CM) index as shown in Appendix D:

q 二 qj 二 qj(cm),
〜
Pj 二 Pj 二 Pj (CM). (161)

Here, as shown in Appendix D, the above MQDT 
parameters differ from the corresponding ones in CM not 
only in the resonance parts but also in the background parts 
though the difference in the latter is the second order in §, in 
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contrast to the case of total cross sections.

Summary and Discussion

The dynamics in the reaction zone are studied in the usual 
MQDT by the distortion of a fixed regular solution along a 
fragmentation channel in the outer region. The extent of the 
distortion is given by the short-range reactance matrices K 
which multiplies an irregular solution. Giusti-Suzor and 
Fano modified the usual theory so that the part of the core 
dynamics incorporated into the base pair for a motion along 
a fragmentation channel is no longer fixed. The freedom in 
the allocation of the short-range dynamics between the 
motion along the fragmentation coordinate and the short­
range reaction matrix K is combined with the orthogonal 
transformation considered by Lecomte, Ueda and others to 
reformulate the MQDT theory into the form of the CM 
theory and thus to make MQDT have the full power of the 
CM one, still keeping its power of being able to describe the 
photofragmentation processes with only a few parameters. 
These parameters allow clear physical interpretation in terms 
of geometrical transformations and interchannel coupling 
strengths as in the work of Giusti-Suzor and Fano for 
systems involving only two channels. In the present work, 
the geometrical transformations have more diverse origins 
because of the additional open channel and are studied by 
the geometrical method devised to study the coupling 
between background and resonance scatterings. The dynamic 
parameters with simpler and more transparent physical 
origins or meanings responsible for the experimental data of 
total and partial photofragmentation cross sections are 
subsequently identified.

Notice that some short-range reactance matrices are 
expressed with parameters specific to the open- and closed­
ness of channels even though they are defined in the region 
where open- and closed-ness of channels cannot be defined. 
This peculiar aspect of the present theory remains to be 
investigated in the future, besides the extension of the 
current work to the systems involving more channels. 
Actually, full investigation of this point is very important if 
we remember that the unified treatment of discrete and 
continuum spectra hinges on it.
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Appendix A: The Derivation of Eq. (20) from Eq. (38)

We first notice the relations:

S * = (1-iKcc)(1 + iK*)「'，

Bull. Korean Chem. Soc. 2002, Vol. 23, No. 11 1575

S '°o = -2 i (1+ iK，。。)-1K，oc (1 + iKcc )-1,

S 心=-2 i (1+ iKcc )-1 KfCO (1 + iK'°° )-1,

S 冲=(1 - iK‘o)(1 + ")-1, (A1)

where KfO° is defined as

K° = K 'oo - K 'oc (- i + K,cc )-1 K 'co. (A2)

Let us first rewrite S'cc-exp(2ipw') as

S心-e，니사' = (1 - iK心)(1 + iK心)-1-e"戒 W*Te辨W”e"戒

=-2ien Wc(T)eli3(cospWccosnuc-sin^Wcsinnji )

x ( tan^/ + Kcc)(1 + iKcc)-1 (A3)

We will need the following formula for the subsequent derivation:

(S 心-eWWj-1-(S* +1)-1 = 2(1+ iKcc)(tan^/ + Kcc)-1(1+ iKcc),
(A4)

which can be easily derived from Eq. (A3) and (S'圣 + 1) 1 = 
(1 + i Kcc)/2 . Substituting Eq. (A1) into Eq. (A4), we obtain

S*[(S心-e")-1 -(S* + 1)-1 ]S'g

=-2 i (1 + iK 'oo)-1K* (tan缶'+ Kcc )-1 K* (1+ iK，o° )-1, (A5)

With Eq. (A5), Sf Eq. (38) can be rewritten as

S' = $g-S'°c[(S'cc - e”"-(S'cc + 1 )-1]S心

=yo+2i (1 + iK。、)-1K* (tan偽'+ K* )-1 K* (1+ iK* )-1,
(A6)

where the effective of°° matrix analogous to kfdefined by

K，o° = -i(1 + boo)T (1 -《严) (A7)

and obtained as

广=S * - S (S * + 1 )-1 S *. (A8)

With Eq. (A6), we obtain

(1 + S，)-1 = (1 + ^00)-1 - 2K'oc (tan pw' + K'cc)-1 K'co. (A9)

From Eq. (A9) and the following identity

cc -1 co -1 cc -1 co oo -1
(tan戶w + K ) K (-1 + K，) = (tan 戶w + K ) K (-1 + K ),

(A10)
Eq. (20) is easily obtained.

Appendix B: The Correspondence between 中厂)and 中以'

Inserting Eq. (91),毗Eq. (97) can be rewritten in as R > Ro

(W")1 = e_"[ (eSr ⑹)1 -e 如筋)1)+( *)1,2 (e 项⑹),- <舟(心)], 

(W")2 =(邪「〉)2 = (0+ )2-(0-)2. (B1)

In order to show that the above physical incoming wavefucntions 
(邪「))1 and ( ®r)e§pond to the CM wavefunctions —나/(a)
exp (-i§r) and -나spectively, we first need the following 
relations:

(0+ )1 -(0-)1 =史,

(0+ )2-(0-)2 = W加 (B2)

which will be derived below, where 俨) is the 'a' state introduced by 
Fano and defined by
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矿> =£旳前'

(:이 VE2 )1/2
(B3)

with 诚-A oting the incoming wavefunction for the continuum 
which breaks up into the channel k. If we denote the discrete state by 
Oe with energy En, VkE in Eq. (B3) is defined by (必f )|H 如). 
Fano's 'a' state can alternatively be given in terms of the background 
eigenchannel wavefunctions Wm for S° as

Let us next consider obtaining the CM term corresponding to the 
second term on the right-hand side of Eq. (B1). Using the formula 
(25), we can easily check that it is an exponentially decreasing 
function as

) = £m-m(-시H 如-
(&|v시2 )1,2

=? Wm (r-
1/2

(B4)

where the last equality follows from the definition of % as 
(WmH M)5m眼 and 2n£jV시2 = 2n니(W.IH 阻)|'=「 
(see Ref. [21]). Note also from Eq. (50) that

e逐(0)3-罪(0-)3 T -®3 쓰-DseF 
听0

as it is constructed so. If only closed channels exist, the above function 
would be a true bound state. Since open channels also exist, it is not a 
true bound state. As a good approximation, we may regard it as a 
discrete state in CM. We can normalize it by the well-known 
procedure2 and thus can be related to the space-normalized @咆 
CM as n

(B14)

d으)1,2 (e 项 (0+ )3 - e (0-)3 )| p = 

dp j W 財

如n
—

n(SkVkJ2 )1,2
sinSr, R >R°.

(B15)
,、 砂 0(W lW1) = J늠 = cos읏, 

r 2
From Eqs. (B2), (B10), and (B1), we obtain

/ 」a) I \ /T2 0r
(W )|W2)=岸=cos万. '

From Eqs. (B4) and (B5), we have

(a) 0^ 0r
W ) = W1cos-2- + W2cos-2-. I

If we denote the continuum orthogonal to 応 ) ，诚 )may be
given by

(B5)

(B6)

(幻 . e^ Or
W = — W1sin万 + W2cos-2-. (B7)

From the above two equations, the relation between Fano’s 'ab' states 
and the background eigenchannel wavefUncitons can be written in 
matrix form as

i c _ I c _ I , M , , 0 、 i c _
/ (a) (b)、 , 、 (—) (—) -2e0by 2(冬 + A12bz)-2何
(W ,W ) = (W1,W2)e = (W1 ,W )e e ”e

(B8)

From this relation, we obtain the transformation relation

I、0 / i C i 10 i c 、(、-；00by 沖2bz *rb 

(wj_)|W“))= e2 I e 2 ye2 e 仏 (B9)
顷

where A is used to represent 'ab'. In the CM theory, we use another
type of continuum function which lags 俨) in phase by 90o. If we1 ，•‘ Ta) .,i 1denote it as W , it can be expressed as

苛) = -i[(0+ )1+(0-)1 ], R >R°. (B10)

(J⑹)1 一产⑶1) + (紂OS 一面)3 ]

- W(a)cos5 一 W(a)sin5 一 --- - -- -sin5
n(£j 財)1，2 r

仮冒斜铲- 矿）cos 이, (B16)

where ^En is the modified discrete state with energy En introduced by 
Fano.13 If we define 中。) as - W°), then we have

((吧T)1,(吧T)2)=-(产中⑴,站)),

where W(a) is defined as

M = ^En  ̂- i

and extensively used in the CM theory.15,16

(B17)

(B18)

Appemdix C: The Solution of ^(k°° ) =0 and ^(kc ) =0

From both ^^n(:koo) 징간(Kfg zero, we have

(C1)

(C2)

From the relation we=have= n s，2 =(50,2,

1 办 12m- 土ikjR 土將 _ 1 办 12 m- ±ikjR 土 in丿 ~ 土 ■— Q /—-e 丿 e = ■— Q /—% J e J = 0
2 i W nkj 2 i 시 nkj j

Using this relation, the background incoming wave W「) 
rewritten as

(B11)

can be

Let us limit the discussion to the system involving only one closed 
channel. Then insertion of the formula (C1) for Koo into Eq. (C2) and 
then rearrangement of terms yield

Kc\ 1- K°KC Kco(1 + Koo2)-1Koc] = 0.
L 1 + Kcc2 _l

Eq. (C3) has two solutions, one is Kcc = 0 and the other is

(C3)

W— j j쁘 (f - e")
S(K) = -1+ 話2

KCOKOC
(C4)

-；£ / ~+ ~—「-?O0 做-iit, b 扣 0by~| 、2~ \ l/Vc I 2 y 1^z 2 y I I=e y ^0^- Sjk-Oj |_e e e , R >R°. (B12)

Multiplying Eq. (B12) by exp(i&/2 ) exp(—弟。’/2 ) exp(i△%0顼2 
exp(-i Or^y/2 ) and using

y 了「냣饵 ±2&膈 逐r叫Z O e e e =(缶)2
j e P L 」j

and Eq. (B8), we obtain Eq. (B2).

(B13)

K°° = 0 follows from Eq. (C1) if Kcc = 0 . This is the desired 
solution. Let us next consider the other solution. In this case, let us 
restrict the number of open channels to two as in the present system. In 
this case, the condition imposed on Koo for all the resonance-centered 
representations is tr(K° ) = 0 from Eq. (61). From tr(1) = 2 and tr(oi) 
= 0, the condition Kfooro t=he0 resonance-centered representation 
means that K00 is a linear combination of only Pauli matrices. From 
(6)2= 1, K°o is easily seen to be a unit matrix multiplied by a 
positive constant, say a2. Then,
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C ，- £c、 T/co，、 , r，oo2、一1 7/oc r，co r，oc /、 , 2、一1 -S(K ) = K (1 + K ) K = K K (1 + a ) . (C5)

From Eqs. (C4) and (C5), we have

(KcoKoc)2 = (1+ Kcc2)(1+ a2 )> 1. (C6)

From the above equation and the positiveness of K°Ko, we obtain 
the condition Kthceo Kseocc o>n1d solution satisfies. 

and 나gw differ from the corresponding ones in CM not only in 
the resonance parts but also in the background parts though the 
difference in the latter is the second order in g. In contrast to this, the 
difference between two theories in the formulas of partial cross 
sections does not appear in the background parts. Since partial cross 
sections are expressed in terms~ of (Mj ) | T| i ) in MQDT, let us 
consider the relation between Mid . Eq.i优 1)19) can be 
rewritten in Rs> R°

Appendix D: Relations between Parameters for Partial 
Cross Sections in MQDT and CM

The pj parameter of Eq. (150) can be rewritten using Eq. (101) as

Mj = b：-乙 b-(CToo)ij -乙(b； + b-)[(1 + Scc)-1 S]“

i e P i e Q

Nj = b；-乙 b-[Soo + Soc(1 - Scc)-1 Sco]ij

i e P

_ -2繹(w(-)M")((、FT)1|T|i)

Pj = e ("i) (D1)
~， ~ ~ 一一 ，~ 一一

+ 乙(Qi-Q-)[(1+ Scc)-Sco]。 (D9)
i e Q

In order to give a relation to pj (CM) of Eq. (151), we need relations of 
(中")1 and 'w^h 皿어 respe/j-vely. From the relation
('折)1 = [('匕)1 - ig('匕)3 ] / (1 + ；) inverse to Eq. (133) and Eq. 
(143), we have

('「〉)' =「%{"'+2屹筋)3 + ；[⑹)1 + 筋)1]}，R >Ro. (D2)

',(-)Next, let us consider 中j . Its form in R >Ren by
~ . ~ ， .——.~ ~ ~ ~Uy(-) = Q+ V n Coo Q Cco'j = bj —乙 BQij — f>3S3j . (D3)

After some manipulations, S°° and Sc° can be calculated from Eq. (94) 
with Snod=a&1- g2az)/(1 + g2) S：° = -2ig( 1,0)/(1 + g2)

where (J° is defined in Eq. (A8). Using Eq. (D4) and 
manipulations, we obtain

o~oo -iA12ff. «0
CT = e

[(1 + Scc )-1 Sco ]3j
2( br +bo)CTy -拭財.n0-| 

e e .
」u

~ 亠) (_) 2£ 3 ~+ ~-「2( br +bo)做-2葛2『n0'M =诚 e + ig( Q3 + Q3) e e

甘 + 乙 Q-[厂心가% - n,^]ij

i e Q

1j

after some

(D1o)

(D11)

Soo = 1%。一点。.“0 (1-g2ff. nr，，),

驾=-莒応+七心.“0] ,, (D4)

where n：=Rn°(—△*)Ry(br +。°)z . With these, '(comes

IT，(-) q+ V1 c- 1 r -zA12ff.n0 /1 f-2 ”、、中* = bj 一 乙 bi -一一-[e (1 - g CT-nr")],j
i e P 1 + g

2 ig ~-「2(br + bo)CTy -2葛2『n0-|+t+^F e e ]u (D5)

in R > Ro . Expressing b+ terms of the background incoming wave 
/j using

祖e我=甘-乙 b-(e%0"0)ij, R > Ro (D6)
i e P

obtainable from Eq. (B12), Eq. (D5) becomes

'矿 = 袒e我 +「틀 乙 b-[厂我5(1 + ct- n,，，儿

1 + g i e P

2 ig ~-「2( br + bo)CTy ―拭竺 «0-|+t+^F e e L (D7)

in R > Ro .
Eqs. (D2), (D7), and (D1) tell us that as g goes to zero, we have

in REqR (D11) 아lows that 
resonant part.

2( br +bo)CTy -拭2『n0~|

e e L

aM( differ 啤妪 in the
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