• Title/Summary/Keyword: quantum optics

Search Result 231, Processing Time 0.025 seconds

Chemical and Thermal Characterizations of Electron Beam Irradiated Jute Fibers (전자빔 조사된 황마섬유의 화학적 및 열적 특성분석)

  • Ji, Sang Gyu;Cho, Donghwan;Lee, Byung Cheol
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.162-167
    • /
    • 2010
  • In the present work, the effect of electron beam irradiation on the chemical and thermal characteristics of cellulose-based jute fibers was explored by means of chemical analysis, electron spin resonance analysis, ATR-FTIR spectroscopy, thermogravimetric analysis and thermomechanical analysis. Jute fiber bundles were uniformly irradiated in the range of 2~100 kGy by a continuous method using a conveyor cartin an electron beam tunnel. Electron beam treatment, which is a physical approach to change the surfaces, more or less changed the chemical composition of jute fibers. It was also found that the radicals on the jute fibers can be increasingly formed with increasing electron beam intensity. However, the electron beam irradiation did not change significantly the chemical functional groups existing on the jute fiber surfaces. The electron beam irradiation influenced the thermal stability and thermal shrinkage/expansion behavior and the behavior depended on the electron beam intensity.

Synthesis of Zinc Ferrite Nanocrystallites using Sonochemical Method (음향화학법을 이용한 아연페라이트 나노입자의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Kang, Kun-Uk;An, Dong-Hyun;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2007
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized zinc ferrite particles using chemical co-precipitation technique through a sonochemical method with surfactant such as oleic acid. The thermal behaviour of the zinc ferrite was determined by the thermoanalytical techniques (TGA-DSC). Powder X-ray diffraction measurements show that the samples have the spinel structure. Magnetic properties measurement were performed using a superconducting quantum interference device (SQUID) magnetometer.

Improving the Color Gamut of a Liquid-crystal Display by Using a Bandpass Filter

  • Sun, Yan;Zhang, Chi;Yang, Yanling;Ma, Hongmei;Sun, Yubao
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • To improve the color gamut of a liquid-crystal display (LCD), we propose a bandpass filter that is added to the backlight unit to optimize the backlight spectrum. The bandpass filter can only transmit red, green and blue light in the visible range, while reflecting the unwanted light. We study the optical properties of the bandpass filter using the transfer-matrix method, and the effect of the bandpass filter on the color gamuts of LCDs is also investigated. When a bandpass filter based on a 5-layer configuration comprising low and high refractive indices ((HL)2H) is used in phosphor-converted white-light-emitting diode (pc-WLED), K2SiF6:Mn4+ (KSF-LED), and quantum-dot (QD) backlights, the color gamuts of the LCDs improve from 72% to 95.3% of NTSC, from 92% to 106.7% of NTSC, and from 104.3% to 112.2% of NTSC respectively. When the incident angle of light increases to 30°, the color gamuts of LCDs with pc-WLED and KSF-LED backlights decrease by 2.9% and 1% respectively. For the QD backlight, the color gamut almost does not change. When the (HL)2H structure is coated on the diffusion film, the color gamut can be improved to 92.6% of NTSC (pc-WLED), 105.6% of NTSC (KSF-LED), and 111.9% of NTSC (QD). The diffusion film has no obvious effect on the color gamut. The results have an important potential application in wide-color-gamut LCDs.

The mesa formation and fabrication of planar buried heterostructure laser diode by using meltback method (Meltback을 이용한 mesa shape의 형성과 평면매립형 반도체레이저의 제작)

  • 황상구;오수환;김정호;김운섭;김동욱;홍창희
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.518-523
    • /
    • 1999
  • In thi, study, we made experiments to fonn a mesa shape by meltback method with various concentration of solutions and found that unsaturated (20%) InGaAsP (1.55 !-tm) solution at a growth temperature was the most suitable for the formation of a mesa ,hape on the wafer which has an InGaAsP active layer and an InP cap layer on an n-InP substrate. It was difficult to form a proper mesa shape for the fabrication of PBH-LDs only by the meltback method; therefore, we fabricated PBH-LDs by forming the mesa shape with the meltback method after wet etching and by growing a current-blocking layer successively. As the electrical and optical charaleri,tiecs of MQW-PBH-LDs fabricated by above methods, when the cavity length was $300{\mu}m$, the threshold current was about 10 mA, internal quantum efficiency 82%, internal loss $9.2cm^{-1}$, and characteristic temperature was 65 K at $25~45^{\circ}C$ and 42 K at $45~65^{\circ}C$. /TEX>.

  • PDF

Influence of high energy electron beam treatment on the photocatalytic activity of $TiO_2$ nanoaparticles on carbon fiber

  • Sim, Chae-Won;Kim, Myeong-Ju;Seo, Hyeon-Uk;Kim, Gwang-Dae;;Kim, Dong-Un;Nam, Jong-Won;Jeong, Myeong-Geun;Lee, Byeong-Cheol;Park, Ji-Hyeon;Kim, Yeong-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.441-441
    • /
    • 2011
  • $TiO_2$ nanoparticles were grown on carbon fiber by atomic later deposition (ALD) with TTIP $(Ti(OCH(CH_3)_2)_4$ and $H_2O$ precusors. After sampe surfaces were treated by electron beam (1 MeV, 5 KGy), an improvement in the photocatalytic reacitivity of $TiO_2$ nanoparticles on carbon fiber was observed. An increase in the population of hydroxyl group on $TiO_2$ particles and the oxidation of carbon fiber were found upon e-beam exposure, whereas there was no noticeable changes of their morphology. It implies that those changes in O and C 1s state of $TiO_2$ particles/carbon fiber induced by e-beam treatment could be related to the enhancement of the photocatalytic activity. In contrast, when carbon fiber fully covered with $TiO_2$ thick films was treated with high-energy electron beam under same conditions, the improvement of photocatalytic activity as well as any changes in XPS spectra (Ti 2p, O 1s and C 1s) could not be found.

  • PDF

The optimum design of MQW Buried-RWG LD (MQW Buried RWG LD 최적화 설계)

  • 황상구;오수환;김정호;김운섭;김동욱;하홍춘;홍창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.312-319
    • /
    • 2001
  • We proposed a B-RWG LD (Buried-ridge waveguide laser diode) having more merits than a conventional RWG-LD. It's ridge width is controlled easily, it has the advantage of being more planar than the RWG-LD and it is possible to control refractive index with growth layer thickness. Before fabricating the device, we designed the optimal device for single mode, high efficiency and high power operation. From theoretical analysis, we have to control the $d_2, d_3$ layer thicknesses for lateral effective index difference, $\Delta_{nL}$ to be higher than critical value, and simultaneously consider the ridge width for single mode and low threshold current operation. As a result, it is possible to make a single mode LD having the ridge width of $6~9{\mu}m$ if the lateral effective index difference was controlled properly. perly.

  • PDF

Thickness Dependence of Ultraviolet-excited Photoluminescence Efficiency of Lumogen Film Coated on Charge-coupled Device

  • Tao, Chunxian;Ruan, Jun;Shu, Shunpeng;Lu, Zhongrong;Hong, Ruijin;Zhang, Dawei;Han, Zhaoxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.284-288
    • /
    • 2017
  • In order to investigate the ultraviolet-excited photoluminescence properties of phosphor coatings and their relationship to thickness, Lumogen coatings with different thicknesses were deposited on quartz substrates and charge-coupled device chips by thermal evaporation. The variation of the film thickness affected the crystallite size, surface roughness and fluorescence signal. It was found that the Lumogen coating with the thickness of 420 nm has the largest luminescent signal and conversion efficiency, and the corresponding coated charge-coupled devices had the maximum quantum efficiency in the ultraviolet. These results provided one key parameter for improving the sensitivity of Lumogen coated charge-coupled devices to ultraviolet light.

Preparation of Magnetic Chitosan Microsphere Particles (나노 크기의 마그네타이트 입자를 이용한 자성 키토산 미소구체의 제조)

  • Ko, Sang-Gil;Cho, Jun-Hee;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.66-70
    • /
    • 2006
  • Magnetite nanoparticles, which have been extensively used in many fields, were encapsulated with a natural polymer, chitosan, to improve their biocompatibility. We have synthesized magnetite $(Fe_3C_4)$ nanoparticles using chemical coprecipitation technique with sodium oleate as surfactant. Nanoparticle size can be varied from 1.2 to 7.4nm by controlling the sodium oleate concentration. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetic colloid suspensions containing particles with sodium oleate and chitosan have been prepared. High magnetic property chitosan-microsphere particles were prepared from oleate-coated magnetite suspension using spray method. The surftce, and tile morphology of the magnetic chitosan microsphere particles were characterized using optical microscope and scanning electron microscope. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the chitosan microspheres including magnetite nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles.

Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method (음향화학법을 이용한 균일한 나노 자성체의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized magnetite particles using coprecipitation method, sonochemical method without surfactant, and sonochemical method with surfactant, in order to investigate the effect of ultrasonic irradiation and surfactant on the coprecipitates of metal ions. The size of the magnetite nanoparticles prepared by coprecipitation method, and sonochemical method without surfactant showed broad distributions. But we got uniform nanoparticles using a sonochemical method with oleic acid. The average size of the particles can be controlled by the ratio $R=[H_2O]/[surfactant]$. The size of the magnetite nanoparticles prepared by this method showed narrow distributions. We have characterized the nanoparticles using an X-ray diffraction (XRD), a superconducting quantum interference device (SQUID), and atomic force microscope (AFM). The size and distribution of the magnetite nanoparticles were measured by dynamic light scattering (DLS) method.

Study on the Current Spreading Effect of Blue GaN/InGaN LED using 3-Dimensional Circuit Modeling (3차원의 회로 모델링을 이용한 청색 GaN/InGaN LED의 전류 확산 효과에 관한 연구)

  • Hwang, Sung-Min;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • A new and simple method of 3-dimensional circuit modeling and analysis is proposed and verified experimentally for the first time by determining 3-dimensional current flow and 2-dimensional light distribution in blue InGaN/GaN multi-quantum well (MQW) light emitting diode (LED) devices. Circuit parameters of the LED consist of the resistance of the metallic film and epitaxial layer, and the intrinsic diode which represents the active region emitting the light. The circuit parameters are extracted from the transmission line model (TLM) and current-voltage relation. We applied the >> proposed method and extracted circuit parameters to obtain the light emission pattern in a top-surface emitting-type LED. The current spreading effect is analyzed theoretically and quantitatively with a variation of the resistance of metallic and epitaxial layers. The emitting-light distribution of the fabricated blue LED showed a good agreement with the analyzed result, which shows the dark emission intensity at the corner of the p-electrode.