N1-P010

Influence of high energy electron beam treatment on the photocatalytic activity of TiO₂ nanoaparticles on carbon fiber

<u>심채원</u>¹, 김명주¹, 서현욱¹, 김광대¹, 닐로이 쿠마르 데¹, 김동운¹, 남종원¹, 정명근¹, 이병철², 박지현³,김영독¹*

¹성균관대학교 화학과, ²Korea atomic energy research institute Quantum Optics Labaratory, ³University of Science and Technology Laser and Plasma engineering

TiO₂ nanoparticles were grown on carbon fiber by atomic later deposition (ALD) with TTIP (Ti(OCH(CH₃)₂)₄ and H₂O precusors. After sampe surfaces were treated by electron beam (1 MeV, 5 KGy), an improvement in the photocatalytic reactivity of TiO₂ nanoparticles on carbon fiber was observed. An increase in the population of hydroxyl group on TiO₂ particles and the oxidation of carbon fiber were found upon e-beam exposure, whereas there was no noticeable changes of their morphology. It implies that those changes in O and C 1s state of TiO₂ particles/carbon fiber induced by e-beam treatment could be related to the enhancement of the photocatalytic activity. In contrast, when carbon fiber fully covered with TiO₂ thick films was treated with high-energy electron beam under same conditions, the improvement of photocatalytic activity as well as any changes in XPS spectra (Ti 2p, O 1s and C 1s) could not be found.

Keywords: High-energy e-beam, Surface treatment, TiO2, Atomic layer deposition, Photocatalysis