Browse > Article

Chemical and Thermal Characterizations of Electron Beam Irradiated Jute Fibers  

Ji, Sang Gyu (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Cho, Donghwan (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Byung Cheol (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of Adhesion and Interface / v.11, no.4, 2010 , pp. 162-167 More about this Journal
Abstract
In the present work, the effect of electron beam irradiation on the chemical and thermal characteristics of cellulose-based jute fibers was explored by means of chemical analysis, electron spin resonance analysis, ATR-FTIR spectroscopy, thermogravimetric analysis and thermomechanical analysis. Jute fiber bundles were uniformly irradiated in the range of 2~100 kGy by a continuous method using a conveyor cartin an electron beam tunnel. Electron beam treatment, which is a physical approach to change the surfaces, more or less changed the chemical composition of jute fibers. It was also found that the radicals on the jute fibers can be increasingly formed with increasing electron beam intensity. However, the electron beam irradiation did not change significantly the chemical functional groups existing on the jute fiber surfaces. The electron beam irradiation influenced the thermal stability and thermal shrinkage/expansion behavior and the behavior depended on the electron beam intensity.
Keywords
jute fiber; electron beam irradiation; characterization; thermal behavior;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Hokens, A. K. Mohanty, M. Misra, and L. T. Drzal, Polym. Compos., 42, 70 (2001).
2 D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Tech., 13, 460 (2002).
3 J. Nickel and U. Riedel, Materialstoday, April, 44 (2003).
4 A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interfaces, 8, 313 (2001).   DOI   ScienceOn
5 Q. Zhou, D. Cho, B. K. Song, and H.-J. Kim, Compos. Interfaces, 16, 781 (2009).   DOI   ScienceOn
6 S.-Y. Lee, S.-J. Chun, G.-H. Doh, and I.-A. Kang, J. Compos. Mater., 43, 1639 (2009)   DOI   ScienceOn
7 I. V. Weyenberg, T. C. Truong, B. Vangrimde, and I. Verpoest, Compos. Part A, 37, 1368 (2006).   DOI   ScienceOn
8 V. Alvarez, I. Mondragon, and A. Vazquez, Compos. Interfaces, 14, 605 (2007).   DOI   ScienceOn
9 D. Cho, H. S. Lee, S. O. Han, and L. T. Drzal, Adv. Compos. Mater., 16, 315 (2007).   DOI
10 Y. H. Han, S. O, Han, D. Cho, and H. I. Kim, Macromol. Symp., 245, 539 (2006).   DOI   ScienceOn
11 A. Alberti, S. Bertini, G. Gastaldi, N. Iannaccone, D. Macciantelli, G. Torri, and E. Vismara, Euro. Polym. J., 41, 1787 (2005).   DOI   ScienceOn
12 M. Zenkiewicz, Radiat. Phys. Chem., 69, 373 (2004).   DOI   ScienceOn
13 N. Getoff, Radiat, Phys. Chem., 65, 437 (2002).   DOI
14 S. G. Ji, D. Cho, W. H. Park, and B. C. Lee, Macromol. Res., 18, 919 (2010).   DOI
15 E. Y. Lee, J. Y. Jeong, J. E. Noh, D. J. Jo, and J. H. Kwon, Korean J. Food Sci. Tech., 34, 18 (2002).   과학기술학회마을
16 J. M. Seo, D. Cho W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, and S. J. Jung, J. Biobased Mater. Bioener., 1, 331 (2007).   DOI