• Title/Summary/Keyword: quantum optics

Search Result 231, Processing Time 0.022 seconds

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

Characteristics of two extended-cavity diode lasers phase-locked with a 9.2 CHz frequency offset (9.2 GHz 주파수 차이로 위상잠금된 두 외부 공진기 다이오드 레이저의 제작 및 특성 조사)

  • Kwon, Taek-Yong;Shin, Eun-Ju;Yoo, Dae-Hyuk;Lee, Ho-Sung;In, Min-Kyo;Cho, Hyuk;Park, Sang-Eon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.543-547
    • /
    • 2002
  • We have constructed two extended-cavity diode lasers which are phase-locked with a 9.2 GHz frequency offset. We adopted a digital servo circuit for the phase-locking. The relative linewidth of the phase-locked lasers was less than 2 Hz. Using the measured beat spectrum, we found the carrier concentration to be about 93 %. We measured phase noise and relative frequency stability of the lasers. The Allan deviation at the gate time of 20 s was $2.7{\times}10^{-19}$.

Design and Demonstration of All-Optical XOR, AND, OR Gate in Single Format by Using Semiconductor Optical Amplifiers (반도체 광증폭기를 이용한 다기능 전광 논리 소자의 설계 및 측정)

  • Son, Chang-Wan;Yoon, Tae-Hoon;Kim, Sang-Hun;Jhon, Young-Min;Byun, Yung-Tae;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.564-568
    • /
    • 2006
  • Using the cross-gain modulation (XGM) characteristics of semiconductor optical amplifiers (SOAs), multi-functional all-optical logic gates, including XOR, AND, and OR gates are successfully simulated and demonstrated at 10Gbit/s. A VPI component maker^TM simulation tool is used for the simulation of multi-functional all-optical logic gates and the10 Cbit/s input signal is made by a mode-locked fiber ring laser. A multi-quantum well (MQW) SOA is used for the simulation and demonstration of the all-optical logic system. Our suggested system is composed of three MQW SOAs, SOA-1 and SOA-2 for XOR logic operation and SOA-2 and SOA-3 for AND logic operation. By the addition of two output signals XOR and AND, all-optical OR logic can be obtained.

Soliton Mode-locking and Numerical Analysis of Yb3+-doped Potassium Double Tungstate Lasers in Compact Laser Cavity Geometries (Yb3+ 도핑된 칼륨 이중 텅스테이트 결정을 이용한 소형 공진기에서의 솔리톤 모드 잠금 레이저 구현 및 수치 해석)

  • Deok Woo Kim;Kwang Hoon Ko;Fabian Rotermund
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.241-249
    • /
    • 2024
  • In this study, we demonstrate compact mode-locked laser operations using three different kinds of Yb3+-doped potassium double tungstate laser crystals, Yb:KGdW, Yb:KYW and Yb:KLuW, operating near 1040 nm at a repetition rate of 405 MHz. We utilized a semiconductor saturable absorber mirror as a mode locker, successfully maintaining mode-locked states for several hours without any Q-switching instabilities for all types of laser crystals. Notably, the Yb:KGdW mode-locked laser produces the shortest pulse with a duration of 108 fs, delivering 125 mW of output power. Additionally, we conducted a numerical analysis by solving the Haus master equation, which incorporates the effect of group delay dispersion and self-phase modulation, using the standard split-step Fourier method.

Effects of the strain on the threshold current density in InGaAs/InGaAsP multiple quantum well lasers (InGaAs/InGaAsP 다중양자우물 레이저에서 변형이 문턱전류밀도에 미치는 효과)

  • 김동철;유건호;주흥로;김형문;김태환
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 1998
  • Thirteen InGaAs/InGaAsP separate-confinement heterostructure multiple quantum well lasers were designed such that the strain in the active layer from 0.9% compressive strain to 1.4% tensile, and their threshold current density was caluculated to see the effects of strain on the threshold current density. The well width was adjusted such that the bandgap of the quantum well is 1.55 ${\mu}{\textrm}{m}$, For the calculation of the band structure and transition matrix element needed for the gain calculation, a block diagonalized 8$\times$8 second-order $\to{k}.\to{p}$ Hamiltonian was used to incorporate the conduction band nonparabolicity and the valence band mixing. The threshold current density shows discontinuity at 0.4% tensile strain where the first heavy-hole subband and the first light-hole subband cross and at 0.5% tensile strain where the second conduction subband begins to exist. The threshold current density at room temperature has a maximum around these 0.4-0.5% tensile strains, and as strain varies in either direction it decreases first and then increases a little after a local minimum. This calculated trend is consistent with the other reported experimental results. We discussed the results of this calculation in comparison with other theoretical or experimental papers on the effect of strain.

  • PDF

Fabrication and characterization of InGaAsP/InP multi-quantum well buried-ridge waveguide laser diodes (Buried-Ridge Waveguide Laser Diode 제작 및 특성평가)

  • 오수환;이지면;김기수;이철욱;고현성;박상기
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.669-673
    • /
    • 2003
  • We fabricated a buried-ridge waveguide laser diode (B-RWG LD) which has more advantages for obtaining lateral single mode operation on the same ridge width and for the planarization of the device surface, compared to the conventional RWG LD. In this LD, the difference of the lateral effective refractive index can be controlled by the thickness of the InGaAsP layer which is grown on the active and the p-InP layers. The InGaAsP multiple quantum well was grown on a n-InP substrate by the CBE. The buried ridge structure was formed by selective wet etchings, followed by liquid phase epitaxy methods. The fabricated LD with the ridge width of 7 ${\mu}{\textrm}{m}$ showed a linear increase of the optical power up to 20 ㎽ without any kinks and a saturated output power of more than 80 ㎽. By measuring the far field pattern, we demonstrate that LDs with the ridge widths of 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$ were operated in a lateral single mode up to 2.7I$_{th}$ and 2.4I$_{th}$, respectively.ely.

Study of the Effect of the Transmittance of a Diffuser Plate on the Optical Characteristics of High-power Quantum-dot Illumination (확산판의 투과율이 고출력 양자점 조명의 광특성에 미치는 영향에 대한 연구)

  • Kim, Hye-Rin;You, Dong Geun;You, Jae Hwan;Jang, Jun Won;Choi, Moo Kyu;Hong, Seung Chan;Ko, Jae-Hyeon;Joe, Sung-Yoon;Kim, Yongduk;Park, Taehee;Ko, Young Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.220-229
    • /
    • 2021
  • The optical characteristics of high-power direct-lit white light-emitting diode (LED) lighting were investigated, where a quantum dot (QD) film was adopted to enhance the color-rendering index (CRI). The transmittance of the diffuser plate and the concentration of the QD film were varied in this study. The color coordinates and the correlated color temperature (CCT) did not show any appreciable change, while the CRI values increased slightly as the transmittance of the diffuser plate decreased. The investigated optical properties were nearly independent of the viewing angle, and the luminance distribution was close to Lambertian. The CCT decreased from approximately 6000 K to approximately 4000 K as the concentration of the QD film increased from 0 to 7.5 wt%, which was due to the enhanced red component in the emission spectrum. The CRI increased to approximately 95 for some optical configurations of the lighting. These results demonstrate that glare-free, color-changeable, high-rendering LED lighting can be realized by using a combination of a diffuser plate of appropriate transmittance and a red QD film.

Modeling of Active Layer and Injection-locking Characteristics in Polarized and Unpolarized Fabry-Perot Laser Diodes (편광 또는 무편광 패브리-페롯 레이저 다이오드의 활성층 및 주입 잠금 동작 특성 모델링)

  • Chung, Youngchul;Yi, Jong Chang;Cho, Ho Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.42-51
    • /
    • 2012
  • In this paper, injection-locking characteristics versus active layer structures in Fabry-Perot laser diodes (FP-LD) are compared. TE and TM gain spectra and peak gains versus carrier density in polarized and unpolarized multiple quantum well structures and in an unpolarized bulk structure are calculated. The calculated gain parameters are applied to a time-domain large-signal model to simulate the injection-locking characteristics. The results show that RIN in unpolarized FD-LDs is about 3 dB lower than that in a polarized FP-LD and that the eye characteristics of the unpolarized FP-LD are much better than those of the polarized FP-LD.

Controllable electromagnetically-induced transparency-like response in a bilayer metamaterial

  • Hwang, J.S.;Yoo, Y.J.;Kim, Y.J.;Kim, K.W.;Rhee, J.Y.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.234.2-234.2
    • /
    • 2015
  • Recently, the electromagnetically-induced transparency (EIT)-like effect in metamaterials has attracted enormous interest. Metamaterial analogs of EIT enable promising applications in slow-light devices, low-loss metamaterial, quantum optics, and novel sensors. In this work, we experimentally and numerically studied a bilayer metamaterial for controllable EIT-like spectral response at microwave frequencies. Bilayer metamaterial consists of two snake-shape resonators (SSRs) with one and two bars. The transmission spectra were measured in a frequency range of 4 - 8 GHz in an anechoic chamber at normal incidence. It is found that two SSRs in the metamaterial are activated in bright modes, and the coupling between two bright modes leads to the EIT-like effect, which results in the enhanced transmission at 5.61 GHz. Furthermore, we confirm that the EIT-like feature could be controlled by adjusting the geometric parameters of metamaterial structure. Our work provides a way to tunable EIT-like effect and various potential applications including filters, sensors, and other microwave devices.

  • PDF

Single Mode Lasing Characteristics in Multimode Interferometer-Coupled Semiconductor Square Ring Resonators (다중모드 간섭기를 이용한 반도체 이중사각형 링 공진기에서의 단일모드 발진 특성)

  • Jeong, Dal-Hwa;Moon, Hee-Jong;Hyun, Kyung-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • We report the spectral characteristics of Multimode Interferometer (MMI)-coupled semicondoctor square ring resonators. The epitaxial layers of the proposed semiconductor ring resonator consists of $1.55{\mu}m$ GaInAsP-InP multiple quantum wells. The lasing characteristics were observed by varying the structure parameters of the MMI-coupled square ring resonators. It is concluded that the MMI-coupled scheme selects a single spectral lasing mode in the double square ring cavities.