DOI QR코드

DOI QR Code

Modeling of Active Layer and Injection-locking Characteristics in Polarized and Unpolarized Fabry-Perot Laser Diodes

편광 또는 무편광 패브리-페롯 레이저 다이오드의 활성층 및 주입 잠금 동작 특성 모델링

  • Received : 2012.01.06
  • Accepted : 2012.02.14
  • Published : 2012.02.25

Abstract

In this paper, injection-locking characteristics versus active layer structures in Fabry-Perot laser diodes (FP-LD) are compared. TE and TM gain spectra and peak gains versus carrier density in polarized and unpolarized multiple quantum well structures and in an unpolarized bulk structure are calculated. The calculated gain parameters are applied to a time-domain large-signal model to simulate the injection-locking characteristics. The results show that RIN in unpolarized FD-LDs is about 3 dB lower than that in a polarized FP-LD and that the eye characteristics of the unpolarized FP-LD are much better than those of the polarized FP-LD.

본 논문에서는 패브리 페롯 레이저 다이오드(FP-LD : Fabry-Perot LD)에서 활성층 구조에 따른 주입 잠금 특성을 비교하였다. 편광 및 무편광 다중양자우물 구조와 무편광 벌크 구조의 이득 스펙트럼 및 주입 캐리어 밀도에 따른 최대 이득 특성을 TE, TM 편광에 대하여 계산하였다. 계산된 이득 파라미터를 시영역 대신호 모델에 적용하여 FP-LD의 주입 잠금 특성을 확인한 결과, 무편광 FP-LD가 편광 FP-LD 에 비하여 RIN(Relative Intensity Noise) 특성 면에서 약 3 dB 정도 우수하고, 2.5 Gbps 변조시에 아이 특성이 훨씬 우수함을 알 수 있다.

Keywords

References

  1. C. Ollivry, "Why Fiber? Why Now?," FTTH Council Europe (Montpellier, 2004).
  2. C.-H. Lee, W. Sorin, and B.-Y. Kim, "Fiber to the home using a PON infrastructure," IEEE J. Lightwave Technol. 24, 4568 (2006). https://doi.org/10.1109/JLT.2006.885779
  3. M.-H. Kim, S.-M. Lee, S.-G. Mun, and C.-H. Lee, "A 240 km reach DWDM-PON of 8-Gb/s capacity using an optical amplifier," J. Opt. Soc. Korea 11, 1-4 (2007). https://doi.org/10.3807/JOSK.2007.11.1.001
  4. H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, "A WDM-PON with an 80 Gb/s capacity based on wavelengthlocked Fabry-Perot laser diode," Opt. Express 18, 18077- 18085 (2010). https://doi.org/10.1364/OE.18.018077
  5. S. L. Chuang, Physics of Optoelectronics Devices (Wiley- Interscience Publication, New York, USA, 1995), pp. 176-190.
  6. K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, "A theoretical model of a wavelength-locked Fabry-Pérot laser diode to the externally injected narrow-band ASE," IEEE Photon. Technol. Lett. 17, 1797-1799 (2005). https://doi.org/10.1109/LPT.2005.851886
  7. J.-Y. Kim, S.-R. Moon, and C.-H. Lee, "Analysis of noise evolution in an injection seeded WDM-PON," in Proc. The 16th Opto-Electronics and Communications Conference, OECC 2011 (Kaohsiung, Taiwan, July, 2011), pp. 11-12.
  8. B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000). https://doi.org/10.1109/3.848349
  9. L. M. Zhang and J. E. Caroll, "Large signal dynamic model of the DFB laser," IEEE J. Quantum Electron. 28, 604-611 (1992). https://doi.org/10.1109/3.124984
  10. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Caroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side mode suppression in second order DFB laser using time-domain large-signal travelling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994). https://doi.org/10.1109/3.299461
  11. L. M. Zhang and J. E. Caroll, "Semiconductor 1.55 mm laser source with gigabit/second integrated electroabsorptive modulator," IEEE J. Quantum Electron. 30, 2537-2577 (1994).
  12. D. Marcenac and J. E. Carroll, "Quantum mechanical model for realistic Fabry-Perot lasers," Proc. IEEE 140, 157-171 (1993).
  13. F. Girardin and G.-H. Duan, "Characterization of semiconductor lasers by spontaneous emission measurements," IEEE J. Select. Topics Quantum Electron. 3, 461-470 (1997). https://doi.org/10.1109/2944.605694

Cited by

  1. Epitaxial Structure Optimization for High Brightness InGaN Light Emitting Diodes by Using a Self-consistent Finite Element Method vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.292