DOI QR코드

DOI QR Code

Soliton Mode-locking and Numerical Analysis of Yb3+-doped Potassium Double Tungstate Lasers in Compact Laser Cavity Geometries

Yb3+ 도핑된 칼륨 이중 텅스테이트 결정을 이용한 소형 공진기에서의 솔리톤 모드 잠금 레이저 구현 및 수치 해석

  • Deok Woo Kim (Department of Physics, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kwang Hoon Ko (Quantum Optics Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Fabian Rotermund (Department of Physics, Korea Advanced Institute of Science and Technology (KAIST))
  • 김덕우 (한국과학기술원 물리학과) ;
  • 고광훈 (한국원자력연구원 양자광학연구부) ;
  • 이상민 (한국과학기술원 물리학과)
  • Received : 2024.07.22
  • Accepted : 2024.09.09
  • Published : 2024.10.25

Abstract

In this study, we demonstrate compact mode-locked laser operations using three different kinds of Yb3+-doped potassium double tungstate laser crystals, Yb:KGdW, Yb:KYW and Yb:KLuW, operating near 1040 nm at a repetition rate of 405 MHz. We utilized a semiconductor saturable absorber mirror as a mode locker, successfully maintaining mode-locked states for several hours without any Q-switching instabilities for all types of laser crystals. Notably, the Yb:KGdW mode-locked laser produces the shortest pulse with a duration of 108 fs, delivering 125 mW of output power. Additionally, we conducted a numerical analysis by solving the Haus master equation, which incorporates the effect of group delay dispersion and self-phase modulation, using the standard split-step Fourier method.

본 연구에서는 Yb3+ 이온이 도핑된 세 종류의 이중 텅스텐 결정, Yb:KGdW, Yb:KYW 및 Yb:KLuW을 사용하여 1039 nm의 중심파장 영역에서 반복율이 405 MHz인 연속파 모드 잠금된 소형 고체 레이저를 구현하였다. 모드 잠금을 위한 광스위칭 소자로 반도체 포화 흡수체 거울을 사용하였고, 모드 잠금 상태들은 세 결정 모두에서 수 시간 이상 Q-스위칭 불안정성 없이 안정적으로 동작하였다. 특히 Yb:KGdW 결정을 이용한 레이저는 최고 출력 125 mW에서 108 fs의 펄스폭을 갖는 펄스를 방출하였다. 또한 표준 분할 단계 푸리에 방법을 이용하여 공진기의 군지연 분산 및 자체 위상 변조를 고려한 Haus master 방정식을 수치 해석으로 풀고, 그 결과를 실험결과와 비교 및 분석하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF) (Grant no. RS-2024-00408271), 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) (Grant no. 20224B10100040)의 지원으로 수행되었음.

References

  1. Y. Y. Jing, L. E. Fried, and S. Mukamel, "Ultrafast pump-probe spectroscopy: Femtosecond dynamics in Liouville space," J. Phys. Chem. 95, 8149-8162 (1989).
  2. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat. Photon. 2, 219-225 (2008).
  3. G. K. Kitaeva, "Terahertz generation by means of optical lasers," Laser Phys. Lett. 5, 559-576 (2008).
  4. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, "Optical atomic clocks," Rev. Mod. Phys. 87, 637-701 (2015).
  5. F. X. Kartner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorber," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
  6. F. X. Kartner, J. A. Der Au, and U. Keller, "Mode-locking with slow and fast saturable absorbers-What's the difference?," IEEE J. Sel. Top. Quantum Electron. 4, 159-168 (1998).
  7. A. S. Mayer, C. R. Phillips, and U. Keller, "Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal," Nat. Commun. 8, 1673 (2017).
  8. H. A. Haus and Y. Silberberg, "Laser mode-locking with addition of nonlinear index," IEEE J. Quantum Electron. 22, 325-331 (1986).
  9. F. X. Kartner, D. Kopf, and U. Keller, "Solitary-pulse stabilization and shortening in actively mode-locked lasers," J. Opt. Soc. Am. B 12, 486-496 (1995).
  10. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
  11. C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, "Femtosecond mode locking based on adiabatic excitation of quadratic solitons," Optica 2, 667-674 (2015).
  12. J. Lee, S. Kwon, L. Zhao, and J. H. Lee, "Investigation into the impact of the recovery time of a saturable absorber for stable dissipative soliton generation in Yb-doped fiber lasers," Opt. Express 29, 21978-21991 (2021).
  13. J. E. Bae, S. Y. Choi, C. Krankel, K. Hasse, and F. Rotermund, "Evanescent-field Q-switched Yb:YAG channel waveguide lasers with single- and double-pass pumping," Curr. Opt. Photon. 5, 180-185 (2021).
  14. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
  15. H. W. Yang, C. Kim, S. Y. Choi, G. H. Kim, Y. Kobayashi, F. Rotermund, and J. Kim, "1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror," Opt. Express 20, 29518-29523 (2012).
  16. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguilo, J. Massons, and F. Diaz, "Passively mode-locked Yb:KLu(WO4)2 oscillators," Opt. Express 13, 3465-3470 (2005).
  17. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, "Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser," Opt. Lett. 37, 1133-1135 (2012).
  18. G. Paunescu, J. Hein, and R. Sauerbrey, "100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).
  19. S. Y. Choi, J. W. Kim, M. H. Kim, D. I. Yeom, B. H. Hong, X. Mateos, M. Aguilo, F. Diaz, V. Petrov, U. Griebner, and F. Rotermund, "Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser," Opt. Express 22, 15626-15631 (2014).
  20. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, "Astigmatically compensated cavities for CW dye lasers," IEEE J. Quantum Electron. 8, 373-379 (1972).
  21. P. Loiko, P. Segonds, P. L. Inacio, A. Pena, J. Debray, D. Rytz, V. Filippov, K. Yumashev, M. C. Pujol, X. Mateos, M. Aguilo, F. Diaz, M. Eichhorn, and B. Boulanger, "Refined orientation of the optical axes as a function of wavelength in three monoclinic double tungstate crystals KRE(WO4)2, (RE=Gd, Y or Lu)," Opt. Mater. Express 6, 2984-2990 (2016).
  22. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmidt, "Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion," Opt. Lett. 18, 54-56 (1993).
  23. T. Tomaru and H. Petek, "Effect of third-order dispersion on the phases of solitonlike Cr4+:YAG-laser pulses characterized by the second-harmonic generation frequency-resolved optical gating method," J. Opt. Soc. Am. B 18, 388-393 (2001).
  24. Q. Lin and I. Sorokina, "High-order dispersion effect in solitary mode-locked lasers: Side-band generation," Opt. Commun. 153, 285-288 (1998).
  25. J. Herrmann, V. P. Kalosha, and M. Muller, "Higher-order phase dispersion in femtosecond Kerr-lens mode-locked solid-state lasers: Sideband generation and pulse splitting," Opt. Lett. 22, 236-238 (1997).