• Title/Summary/Keyword: quantum noise

Search Result 141, Processing Time 0.03 seconds

Simple Autocorrelation Measurement by Using a GaP Photoconductive Detector

  • Shin, Seong-Il;Lim, Yong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.435-440
    • /
    • 2016
  • We developed a simple and real-time readout autocorrelator for several tens and sub-10fs pulses, based on the two photon absorption phenomena of a commercial GaP photodetector including a transimpedance amplifier. With a suitable gain adjustment, we demonstrated that the interferometric autocorrelation for sub-nJ pulses delivered as a high output voltage as to resolve all fringes in an autocorrelation trace with features of low noise and a low offset voltage. By fitting the measured quadratic power dependence of output voltages, we obtained the quantum efficiency of TPA for the GaP detector comparable with those of a GaAsP diode and an SHG with a thin BBO crystal. The autocorrelator of a TPA based GaP photodetector is highly suitable for sensitively measuring a few cycle pulses with a broad spectral distribution from 600 nm to 1100 nm.

3D Non-local Means(NLM) Algorithm Based on Stochastic Distance for Low-dose X-ray Fluoroscopy Denoising (저선량 X-ray 영상의 잡음 제거를 위한 확률 거리 기반 3차원 비지역적 평균 알고리즘)

  • Lee, Min Seok;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Low-dose X-ray fluoroscopic image sequences to avoid radiation exposure risk are contaminated by quantum noise. To restore these noisy sequences, we propose a 3D nonlocal means (NLM) filter based on stochastic distancesed can be applied to the denoising of X-ray fluoroscopic image sequences. The stochastic distance is obtained within motion-compensated noise filtering support to remove the Poisson noise. In this paper, motion-adaptive weight which reflected the frame similarity is proposed to restore the noisy sequences without motion artifact. Experimental results including comparisons with conventional algorithms for real X-ray fluoroscopic image sequences show the proposed algorithm has a good performance in both visual and quantitative criteria.

Measurement of fMCG Signals using an Axial Type First-Order SQUID Gradiometer System (권선형 1차 미분계를 이용한 태아심자도 신호 측정)

  • Yu, K.K.;Kim, K.;Kang, C.S.;Kim, J.M.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.139-143
    • /
    • 2009
  • We have fabricated a low-noise 61-channel axial-type first-order gradiometer system for measuring fetal magnetocardiography(MCG) signals. Superconducting quantum interference device(SQUID) sensor was based on double relaxation oscillation SQUID(DROS) for detecting biomagnetic signal, such as MCG, magnetoencphalogram(MEG) and fetal-MCG. The SQUID sensor detected axial component of fetal MCG signal. The pickup coil of SQUID sensor was wound with 120 ${\mu}m$ NbTi wire on bobbin(20 mm diameter) and was a first-order gradiometer to reject the environment noise. The sensors have low white noise of 3 $fT/Hz^{1/2}$ at 100 Hz on average. The fetal MCG was measured from $24{\sim}36$ weeks fetus in a magnetically shielded room(MSR) with shielding factor of 35 dB at 0.1 Hz and 80 dB at 100 Hz(comparatively mild shielding). The MCG signal contained maternal and fetal MCG. Fetal MCG could be distinguished relatively easily from maternal MCG by using independent component analysis(ICA) filter. In addition, we could observe T peak as well as QRS wave, respectively. It will be useful in detecting fetal cardiac diseases.

  • PDF

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF

A Low-noise Multichannel Magnetocardiogram System for the Diagnosis of Heart Electric Activity

  • Lee, Yong-Ho;Kim, Ki-Woong;Kim, Jin-Mok;Kwon, Hyuk-Chan;Yu, Kwon-Kyu;Kim, In-Seon;Park, Yong-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.154-163
    • /
    • 2006
  • A 64-channel magnetocardiogram (MCG) system using low-noise superconducting quantum interference device (SQUID) planar gradiometers was developed for the measurements of cardiac magnetic fields generated by the heart electric activity. Owing to high flux-to-voltage transfers of double relaxation oscillation SQUID (DROS) sensors, the flux-locked loop electronics for SQUID operation could be made simpler than that of conventional DC SQUIDs, and the SQUID control was done automatically through a fiber-optic cable. The pickup coils are first-order planar gradiometers with a baseline of 4 em. The insert has 64 planar gradiometers as the sensing channels and were arranged to measure MCG field components tangential to the chest surface. When the 64-channel insert was in operation everyday, the average boil-off rate of the dewar was 3.6 Lid. The noise spectrum of the SQUID planar gradiometer system was about 5 fT$_{rms}$/$\checkmark$Hz at 100 Hz, operated inside a moderately shielded room. The MCG measurements were done at a sampling rate of 500 Hz or 1 kHz, and realtime display of MCG traces and heart rate were displayed. After the acquisition, magnetic field mapping and current mapping could be done. From the magnetic and current information, parameters for the diagnosis of myocardial ischemia were evaluated to be compared with other diagnostic methods.

CHARACTERISTICS OF THE FAIRCHILD 486 CCD AT MAIDANAK ASTRONOMICAL OBSERVATORY IN UZBEKISTAN (우즈베키스탄 Maidanak 천문대 Fairchild 486 CCD의 기본적인 특성)

  • Lim, Beom-Du;Sung, Hwan-Kyung;Karimov, R.;Ibrahimov, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Understanding of the basic characteristics of an astronomical instrument is a prerequisite to obtaining reliable data from the instrument. We have analyzed more than 1,000 calibration images from the Fairchild 486 CCD (hereafter the Maidanak 4k CCD system) attached to the AZT-22 1.5m telescope at Maidanak Astronomical Observatory in Uzbekistan. The Maidanak 4k CCD system supports three readout modes through 1, 2, or 4 amplifiers. In most cases observers use 4-amplifier readout mode to save time. We have tested the stability and seasonal variation of zero levels and confirm that two quadrants of the images (Amp 1 & 2) show no appreciable seasonal variation. but the other two quadrants (Amp 3 & Amp 4) show an evident seasonal variation in the bias level. The Cryo Tiger, the cooling system used at the Maidanak 4k CCD system, maintains the CCD temperature at -108'E, and effectively suppresses the dark electrons. The mean value versus the variance plot of the flat images does not show the expected relation for an ideal Poisson noise distribution and this is attributed to the large variation in quantum efficiency between different pixels. In addition, we confirm that there is no appreciable difference in gain between readout amplifiers, but there is a large variation in quantum efficiency across CCD chip especially in U. Due to the finite length of shutter opening and closing time, the effective exposure time varies across the science images. We introduce two parameters to quantify the effect of this uneven illumination and present a method to remove these effects. We also present a method to remove the interference patterns appearing in the images obtained with longer wavelength filters and investigate the spatial variation of the point spread function.

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

Measurement set-up for CMOS-based integrated circuits and systems at cryogenic temperature (CMOS 기반의 집적 회로 및 시스템을 위한 극저온 측정 환경 구축)

  • Hyeon-Sik Ahn;Yoonseuk Choi;Junghwan Han;Jae-Won Nam;Kunhee Cho;Jusung Kim
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.174-179
    • /
    • 2024
  • In this work, we introduce a complementary metal-oxide semiconductor(CMOS)-based integrated circuit(IC) measurement set-up for quantum computer control and read-out using a cryogenic refrigerator. CMOS circuits have to operate at extremely low temperatures of 3 to 5 K for qubit stability and noise reduction. The existing cryogenic measurement system is liquid helium quenching, which is expensive due to the long-term use of expendable resources. Therefore, we describe a cryogenic measurement system based on a closed cycle refrigerator (CCR) that is cost-free even when using helium gas for long periods of time. The refrigerator capable of reaching 4.7 K was built using a Gifford-Mcmahon(G-M) type cryocooler. This is expected to be a cryogenic refrigerator set-up with excellent price competitiveness.