• Title/Summary/Keyword: quantum mechanical effects

Search Result 44, Processing Time 0.025 seconds

Fabrication of Nb SQUID on an Ultra-sensitive Cantilever (Nb SQUID가 탑재된 초고감도 캔티레버 제작)

  • Kim, Yun-Won;Lee, Soon-Gul;Choi, Jae-Hyuk
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF

C-V Characteristics in Nanometer Scale MuGFETs with Considering Quantum Effects (양자 현상을 고려한 나노미터 스케일 MUGFETS의 C-V 특성)

  • Yun, Se-Re-Na;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.1-7
    • /
    • 2008
  • In this work, a two dimensional, self-consistent Poisson-$Schr{\ddot{o}}dinger$ solver has been implemented to study C-V characteristics in nanometer scale MuGFETs with considering quantum effects. The quantum-mechanical effects on gate-channel capacitance for different device dimension and gate configurations of nanometer scale MuGFETs have been analyzed. It has been found that 4he gate-channel capacitance per unit gate area is increased as the device dimension decreases. For different gate configurations, the gate-channel capacitance is decreased with increase of effective gate number. Those resu1ts have been explained by the distribution profile of electron concentration in the silicon surface and inversion capacitance. The length of inversion-layer centroid has been calculated from inversion capacitance with device dimension and gate configurations.

Quantum Mechanical Study of the O(1D) + HCl → OH + Cl Reaction

  • Lin, Shi-Ying;Park, Seung-C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2002
  • Quantum mechanical calculation is performed for the $O(^1D)$ + HCl ${\rightarrow}$OH + Cl reaction using Reactive Infinite Order Sudden Approximation. Shifting approximation is also employed for the l ${\neq}$ 0 partial wave contributions. Various dynamical quantities are calculated and compared with available experimental results and quasiclassical trajectory results. Vibrational distributions agree well with experimental results i.e. product states mostly populated at $v_f$ = 3, 4. Our results also show small peak at $v_f$ = 0, which indicates bimodal vibrational distribution. The results show two significant broad peaks in ${\gamma}_i$ dependence of the cross section, one is at ${\gamma}_i$ = $15^{\circ}-35^{\circ}$ and the another is at ${\gamma}_i$= $55^{\circ}-75^{\circ}$ which can be explained as steric effects. At smaller gi, the distribution is peaked only at higher state ($v_f$ = 3, 4) while at the larger gi, both lower state ($v_f$ = 0) and higher state ($v_f$ = 3, 4) are significantly populated. Such two competing contributions (smaller and larger ${\gamma}_i$) result in the bimodal distribution. From these points we suggest two mechanisms underlying in current reaction system: one is that reaction occurs in a direct way, while the another is that reaction occurs in a indirect way.

Substituent Effects for the Menschutkin-Type Reaction of Substituted 2-Phenylethyl arenesulfonates with Substituted Pyridines (치환 2-Phenylethyl arenesulfonate 류와 치환 피리딘류의 Menschutkin 형 반응에 관한 치환기 효과)

  • Soo-Dong Yoh;Joong Hyup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.413-418
    • /
    • 1989
  • The rates for the reaction of substituted 2-phenylethyl tosylates with substituted pyridines were measured in acetonitrile and that of 2-PNS with substituted pyridines were investigated in both acetonitrile and methanol. The substitutent effect was accelerated by an electron-donating substituent on both substrate and nucleophile. Results showed that More O'Ferrall and quantum mechanical model of predicting transition state structure suggest the reaction proceeds via an $S_N2$ mechanism, in which bond-breaking is more advanced than bond-formation. Transition state variation predicted with the quantum mechanical model is consistent with the experimental results, whereas the predictions provided by the More O'Ferrall plots is found to be inconsistent in leaving group. In the reaction of 2-PNS, the rate constants in acetonitrile were larger than that in methanol.

  • PDF

Transition-State Variation in the Solvolyses of para-Substiuted Phenyl Chloroformates in Alcohol-Water Mixtures

  • 구인선;양기율;강금덕;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.968-973
    • /
    • 1998
  • Solvolyses of para-substituted phenyl chloroformates in water, $D_2O,\;CH_3OD$, 50% $D_2O-CH_3OD$, and in aqueous binary mixtures of acetone, ethanol, methanol are investigated at 25.0 ℃. Product selectivities are reported for a wide range of ethanol-water and methanol-water solvent compositions. These data are interpreted using the Grunwald-Winstein relationship, Hammett equation, and quantum mechanical model. Grunwald-Winstein plots of the first-order rate constants for phenyl chloroformates with $Y_{Cl}$ (based on 1-adamantyl chloride) show marked dispersions into three separate curves for the three aqueous mixtures with a small m value and a rate maximum for aqueous alcohol solvents. To account for these results, third-order rate constants, $k_{ww},\;k_{aw},\;k_{wa}$, and $k_{aa}$ were calculated from the observed $k_{ww}\;and\;k_{aa}$ values together with $k_{aw}\;and\;k_{wa}$ calculated from the computer fit. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed carbonyl addition-elimination for para-substituted phenyl chloroformates solvolyses based on mass law and stoichiometric salvation effect studies. This study has shown that the quantum mechanical model predicts transition state variation correctly for $S_N2\;like\;S_AN$ reaction mechanism of para-substituted phenyl chloroformates.

The Magnetic Properties and Quantum Effects of Molecular Nanomagnets (분자 자성체의 자기 특성과 양자역학적 효과)

  • Jang, Zee-Hoon
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • Magnetism of molecular nanomagnet, which attracted a lot of academic attention after the discovery of the macroscopic quantum tunneling of magnetism, is reviewed. Molecular nanomagnet is metal-organic material in which magnetic ions are regularly located in the organic skeleton. Also, the interaction between the molecules is very small and those molecules form macroscopic molecular crystal in which molecules are residing at the element points in the crystal. Molecular nanomagnets show a lot of interesting features, especially, equivalence of macroscopic magnetic properties and molecular magnetic properties. In this paper, research results on molecular nanomagnet with microscopic tool like NMR are reviewed mainly. The new method to observe the quantum tunneling of magnetization discovered in Mnl2-ac with NMR is shown and the research results on the microscopic aspects of the macroscopic quantum tunneling of magnetization using the new method are shown. Also, the physical aspect of the level crossing effect which has been reported originally with NMR in molecular nanomagnet is reviewed with experiment results. The research results on the molecular nanomagnets will reveal the important information about the limit of the miniaturization of magnetic memory units and give us the basic scientific knowledge which is needed for the application for the quantum computation. Moreover, academically, many quantum mechanical theories which have not been checked the validity can be checked with experiments.

Predissociation of the $A^2∑^+$ (v'=4) States of OH:Effects of Multichannel Asymptotic Interactions

  • Lee, Seong Ul
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.497-502
    • /
    • 2000
  • Quantum mechanical analysis is presented for the photodissociation dynamics of the v'=4 levels of the $A^2Σ^+$ state of the OH molecule. We focus on the effects of the multichannel interactions between the asymptotically degenerate states in the recoupling region to see how they affect the dynamics near the predissociating resonances. Both the scalar (total cross section and branching ratios) and the vector properties (angular distributions and alignment parameters) of O($^3P_j, j=0, 1, 2) are treated. The resonances are predicted to be highly Lorentzian, and the branching ratios do not change much across them. Vector properties, however, show very delicate effects of the multichannel interactions and overlapping near the isolated and overlapping resonances. Computed resonance lifetimes agree reasonably well with experimental results.

Comparison of Effects of Ultraviolet and $^{60}$ Co Gamma Ray Irradiation on Nylon 6 Mono-filaments

  • Ohtsuka, Mika;Suzuki, Yoshino;Sakai, Tetsuya;Netravali, Anil N.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • The effect of UV and $^60{Co}$ gamma radiations on the physical and mechanical properties of nylon 6 mono-filaments with different draw ratios has been studied. Specimens were exposed to either up to 25 Mrad of gamma or up to 168 hrs of intense UV irradiation. The results show that nylon mono-filaments exposed to gamma rays, with much higher quantum energy than UV, undergo a larger extent of molecular chain scission. Higher irradiation dose also results in the production of insoluble, macroscopic three-dimensional cross-linked network structure. The amorphous regions with a lower density of cohesive energy (lower molecular orientation) show a higher extent of cross linking reaction whereas amorphous regions with a higher density of cohesive energy (higher orientation) show higher extent of chain scission reaction, irrespective of UV ray or gamma ray irradiation.

Anomalous Real Space Charge Transfer through Thick Barrieres in GaAs/$Al_xGa_{1-x}$As Asymmetric Double Quantun Wells: $Al_xGa_{1-x}$As as a Percolating Barrier

  • Kim, D. S.;H. S. Ko;Kim, Y. M.;S. J. Rhee;Kim, W. S.;J. C. Woo;Park, H. J.;J. Ihm;D. H. Woo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.127-137
    • /
    • 1995
  • Anomalously large real space charge transfer through thick barries in GaAs asymmetric double quantum wells is studied by photoluminesence exitation. This inter-well excitonic transfer is very large when the barrier is the Al0.3Ga0.7As alloy, but disappears when the barrier is GaAs/AlAs digital alloy with an equivalent Al concentration of 0.28. These resilts combined with observed x and barrier thickness depence suggest that the spatial fluctuation of the atomic arrangment of Ga and Al in the alloy may be responsible for this transfer. This picture is supported by the quantum mechanical calculation in three dimensions which takes into account the side fluctuation effects.

  • PDF

Intrinsic and Thermodynamic Effects on the Structure and Energy of the S$_N$2 Transition State$^*$

  • Lee, Ik-Choon;Seo, Heon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.448-453
    • /
    • 1986
  • Two contributions to the activation barrier of the $S_N2$ reaction, intrinsic and thermodynamic, are discussed in connection with the predictive power of various rate-equilibrium relationships. It has been shown that the PES models can only give correct predictions of changes in structure and energy of the transition state if the activation barrier is dictated by the thermodynamic factor. We concluded that the identity and dissociative $S_N2$ reactions are dominated by the intrinsic component while associative $S_N2$ reactions are predominantly of thermodynamic controlled. Thus in the former cases, the PES models fail, whereas in the latter cases predictions based on the intrinsic factor, the quantum mechanical models, fail. Finally in a general case of equal contributions by thermodynamic and intrinsic factors, the $SN_2$ reaction proceeds by a synchronous process with zero net charge on the reaction center, for which predictions of substituent effects will be the same as for the intrinsic control case.