DOI QR코드

DOI QR Code

Quantum Mechanical Study of the O(1D) + HCl → OH + Cl Reaction

  • Lin, Shi-Ying (Department of Chemistry and Institute of Basic Sciences, Sungkyunkwan University) ;
  • Park, Seung-C. (Department of Chemistry and Institute of Basic Sciences, Sungkyunkwan University)
  • Published : 2002.02.20

Abstract

Quantum mechanical calculation is performed for the $O(^1D)$ + HCl ${\rightarrow}$OH + Cl reaction using Reactive Infinite Order Sudden Approximation. Shifting approximation is also employed for the l ${\neq}$ 0 partial wave contributions. Various dynamical quantities are calculated and compared with available experimental results and quasiclassical trajectory results. Vibrational distributions agree well with experimental results i.e. product states mostly populated at $v_f$ = 3, 4. Our results also show small peak at $v_f$ = 0, which indicates bimodal vibrational distribution. The results show two significant broad peaks in ${\gamma}_i$ dependence of the cross section, one is at ${\gamma}_i$ = $15^{\circ}-35^{\circ}$ and the another is at ${\gamma}_i$= $55^{\circ}-75^{\circ}$ which can be explained as steric effects. At smaller gi, the distribution is peaked only at higher state ($v_f$ = 3, 4) while at the larger gi, both lower state ($v_f$ = 0) and higher state ($v_f$ = 3, 4) are significantly populated. Such two competing contributions (smaller and larger ${\gamma}_i$) result in the bimodal distribution. From these points we suggest two mechanisms underlying in current reaction system: one is that reaction occurs in a direct way, while the another is that reaction occurs in a indirect way.

Keywords

References

  1. Cicerone, R. J. Science 1987, 237, 35 https://doi.org/10.1126/science.237.4810.35
  2. Kruus, E. J.; Niefer, B. I.; Sloan, J. J. J. Chem. Phys. 1988. 88, 985 https://doi.org/10.1063/1.454124
  3. Wine, P. H.; Wells, J. R.; Ravishankara, A. R. J. Chem. Phys. 1986, 84, 1349 https://doi.org/10.1063/1.450526
  4. Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Streit, G. E.; Howard, C. J.; Jennings, D. A.; Schmeltekopf, A. L. J. Chem. Phys. 1976, 64, 57 https://doi.org/10.1063/1.431910
  5. Davidson, J. A.; Schiff, H. I.; Streit, G. E.; McAfee, J. R.; Schemltekopf, A. L.; Howard, C. J. J. Chem. Phys. 1977, 67, 5021 https://doi.org/10.1063/1.434724
  6. Addison, M. C.; Donovan, J. R.; Gillespie, H. M. Chem. Phys. Lett. 1976, 44, 602 https://doi.org/10.1016/0009-2614(76)80739-7
  7. Basco, N.; Norrish, R. G. W. Proc. R. Soc. London Ser. 1961, A 260, 293
  8. Balucani, N.; Beneventi, L.; Casavecchia, P.; Volpi, G. G. Chem. Phys. Lett. 1991, 180, 34 https://doi.org/10.1016/0009-2614(91)87112-O
  9. Matsumi, Y.; Tonokura, K.; Kawasaki, M.; Tsuji, K.; Obi, K. J. Chem. Phys. 1993, 98, 8330 https://doi.org/10.1063/1.464538
  10. Luntz, A. C. J. Chem. Phys. 1980, 73, 5393 https://doi.org/10.1063/1.439934
  11. Park, C. R.; Wiesenfeld, J. R. Chem. Phys. Lett. 1989, 163, 230 https://doi.org/10.1016/0009-2614(89)80041-7
  12. Alexander, A. J.; Brouard, M.; Rayner, S. P.; Simons, J. P. Chem. Phys. 1996, 207, 215 https://doi.org/10.1016/0301-0104(95)00310-X
  13. Alexander, A. J.; Brouard, M.; Rayner, S. P.; Simons, J. P. 1995 Conference on the Dynamics of Molecular Collisions; Asilomar, California, July 16-21, 1995; p PB51
  14. Schinke, R. J. Chem. Phys. 1984, 80, 5510 https://doi.org/10.1063/1.446662
  15. Liu, B. (unpublished)
  16. Rynefors, K.; Elofson, P. A.; Holmlid, L. Chem. Phys. 1985, 100, 53 https://doi.org/10.1016/0301-0104(85)87023-3
  17. Lagana, L.; Ochoa de Aspuru, G.; Garcia, E. J. Phys. Chem. 1995, 99, 17139 https://doi.org/10.1021/j100047a016
  18. Luz Hernandez, M.; Redondo, C.; Lagana, L.; Ochoa de Aspuru, G.; Rosi, M.; Sgamellotti, A. J. Chem. Phys. 1996, 105, 2710 https://doi.org/10.1063/1.472159
  19. Mirri, A. M.; Scappini, F.; Cazzoli, G. J. Mol. Spectrosc. 1971, 38, 218 https://doi.org/10.1016/0022-2852(71)90107-X
  20. Bruna, P. J.; Hirsch, G.; Peyerimhoff, S. D.; Buenker, R. J. Can. J. Chem. 1979, 57, https://doi.org/10.1139/v79-292
  21. Hirsch, G.; Bruna, P. J.; Peyerimhoff, S. D.; Buenker, R. J. Chem. Phys. Lett. 1977, 52, 442 https://doi.org/10.1016/0009-2614(77)80483-1
  22. Turner, A. G. Inorg. Chem. Acta 1986, 111, https://doi.org/10.1016/S0020-1693(00)84645-9
  23. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand: New York, 1978
  24. Badenhoop, J. K.; Koizumi, K.; Schatz, G. C. J. Chem. Phys. 1989, 91, 142 https://doi.org/10.1063/1.457502
  25. Khare, V.; Kouri, D. J.; Baer, M. J. Chem. Phys. 1979, 71, 1188
  26. Barg, G. D.; Drolshagen, G. Chem. Phys. 1980, 47, 209 https://doi.org/10.1016/0301-0104(80)85008-7
  27. Bowman, J. M.; Lee, K. T. J. Chem. Phys. 1978, 68, 3940 https://doi.org/10.1063/1.436203
  28. Bowman, J. M.; Lee, K. T. Chem. Phys. Lett. 1979, 64, 291 https://doi.org/10.1016/0009-2614(79)80515-1
  29. Bowman, J. M.; Lee, K. T. J. Chem. Phys. 1980, 72, 5071; 1980, 73, 3522(E) https://doi.org/10.1063/1.440769
  30. Baer, M.; Khare, V.; Kouri, D. J. Chem. Phys. Lett. 1979, 68, 378 https://doi.org/10.1016/0009-2614(79)87220-6
  31. Baer, M.; Mayne, H. R.; Khare, V.; Kouri, D. J. Chem. Phys. Lett. 1980, 72, 269 https://doi.org/10.1016/0009-2614(80)80289-2
  32. Kouri, D. J.; Khare, V.; Baer, M. J. Chem. Phys. 1981, 75, 1179 https://doi.org/10.1063/1.442166
  33. Baer, M. Adv. Chem. Phys. 1982, 49, 191 https://doi.org/10.1002/9780470142691.ch4
  34. Khare, V.; Kouri, D. J.; Jellinek, J.; Baer, M. In Potential Energy Surfaces and Dynamics Calculations; Truhlar, D. G., Ed.; Plenum: New York, 1981; pp 475-493
  35. Jellinek, J.; Kouri, D. J. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; Chemical Rubber: Boca Raton, FL, 1985; Vol II, Ch. 1
  36. Baer, M.; Kouri, D. J. In The Theory of Chemical Reaction Dynamics; Clary, D. C., Ed.; Reidel, Dordrecht: 1986; p 167
  37. Jellinek, J.; Baer, M. J. Chem. Phys. 1983, 78, 4494 https://doi.org/10.1063/1.445342
  38. Baer, M.; Nakamura, H. J. Phys. Chem. 1987, 91, 5503 https://doi.org/10.1021/j100305a024
  39. Jellinek, J.; Kouri, D. J. J. Chem. Phys. 1984, 80, 3114 https://doi.org/10.1063/1.447126
  40. Baer, M.; Kouri, D. J.; Jellinek, J. J. Chem. Phys. 1984, 80, 1431 https://doi.org/10.1063/1.446880
  41. Jellinek, J. Chem. Phys. Lett. 1985, 114, 210 https://doi.org/10.1016/0009-2614(85)85089-2
  42. Jellinek, J. J. Math. Phys. 1985, 26, 1397 https://doi.org/10.1063/1.526953
  43. Nakamura, H.; Ohsaki, A.; Baer, M. J. Phys. Chem. 1986, 90, 6176 https://doi.org/10.1021/j100281a024
  44. Ohsaki, A.; Nakamura, H. Phys. Rep. 1990, 187, 1 https://doi.org/10.1016/0370-1573(90)90117-K
  45. Bowman, J. M. Adv. Chem. Phys. 1985, 61, 115 https://doi.org/10.1002/9780470142851.ch2
  46. Bowman, J. M. J. Phys. Chem. 1991, 95, 4960 https://doi.org/10.1021/j100166a014
  47. Park, S. C.; Nakamura, H.; Ohsaki, A. J. Chem. Phys. 1990, 92, 6538 https://doi.org/10.1063/1.458289
  48. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice-Hall, Inc.: 1989
  49. Wigner, E. P.; Eisenbud, L. Phys. Rev. 1947, 72, 29 https://doi.org/10.1103/PhysRev.72.29
  50. Lane, A. M.; Thomas, R. G. Rev. Mod. Phys. 1958, 30, 257 https://doi.org/10.1103/RevModPhys.30.257
  51. Zvijac, D. J.; Light, J. C. Chem. Phys. 1976, 12, 237 https://doi.org/10.1016/0301-0104(76)87093-0
  52. Light, J. C.; Walker, R. B. J. Chem. Phys. 1976, 65, 4272 https://doi.org/10.1063/1.432836
  53. Light, J. C. In The Theory of Chemical Reaction Dynamics; Clary, D. C., Ed.; Reidel, Dordrecht: 1986; p 215
  54. Kuppermann, A. Chem. Phys. Lett. 1975, 32, 374 https://doi.org/10.1016/0009-2614(75)85148-7
  55. Kuppermann, A. In Advances in Molecular Vibrations and Collision Dynamics; Bowman, J. M., Ed.; JAI: Greenwich, 1994; Vol. 2B, p 117 and references there in

Cited by

  1. Stereo-dynamics study of O + HCl → OH + Cl reaction on the 3A″, 3A′, and 1A′ states vol.129, pp.2, 2011, https://doi.org/10.1007/s00214-011-0917-9
  2. Energy dependent dynamics of the O(1D) + HCl reaction: A quantum, quasiclassical and statistical study vol.13, pp.18, 2011, https://doi.org/10.1039/c0cp02619k
  3. 3D Generalized langevin equation approach to gas–surface reactive scattering: model H+H→H2/Si(100)-(2×1) vol.630, pp.1, 2002, https://doi.org/10.1016/s0166-1280(03)00171-4
  4. INITIAL ROTATIONAL QUANTUM STATE EXCITATION AND ISOTOPIC EFFECTS FOR THE O(1D)+HClOH+Cl (OCl+H) REACTION vol.8, pp.1, 2002, https://doi.org/10.1142/s0219633609005209