• Title/Summary/Keyword: quantum groups

Search Result 77, Processing Time 0.026 seconds

Synthesis of CdSe Multi-shell Structured Nanocrystal Quantum Dot through the Continuous Flow Reactor

  • Kim, Kyung-Nam;No, Jae-Hong;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.417-417
    • /
    • 2012
  • For desired optical properties of QDs, it is very important to reduce the presence of defects on their surfaces. Passivation of surface defects using larger band gap materials is the most effective way. Some groups successfully synthesized Cd based multi-shell structured quantum dots and improved its optical properties. However, its productivity has limit because of the amounts of glass ware and space. In this research, we try to synthesize Cd based multi-shell structured nanocrystal quantum dots to overcome demerits of conventional batch synthetic method. This reactor composed pump, SUS reaction part (3.2 mm stainless steel and furnace) and batch mixer. We successively synthesized CdSe/CdS/ZnS quantum dot at this reactor in one step.

  • PDF

One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions

  • Tam, Tran Van;Choi, Won Mook
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1255-1260
    • /
    • 2018
  • In this work, a green and simple one-pot route was developed for the synthesis of highly fluorescent aminofunctionalized graphene quantum dots (a-GQDs) via hydrothermal process without any further modification or surface passivation. We synthesized the a-GQDs using glucose as the carbon source and ammonium as a functionalizing agent without the use of a strong acid, oxidant, or other toxic chemical reagent. The as-obtained aGQDs have a uniform size of 3-4 nm, high contents of amino groups, and show a bright green emission with high quantum yield of 32.8%. Furthermore, the a-GQDs show effective fluorescence quenching for $Cu^{2+}$ ions which can serve as effective fluorescent probe for the detection of $Cu^{2+}$. The fluorescent probe using the obtained aGQDs exhibits high sensitivity and selectivity toward $Cu^{2+}$ with the limit of detection as low as 5.6 nM. The mechanism of the $Cu^{2+}$ induced fluorescence quenching of a-GQDs can be attributed to the electron transfer by the formation of metal complex between $Cu^{2+}$ and the amino groups on the surface of a-GQDs. These results suggest great potential for the simple and green synthesis of functionalized GQDs and a practical sensing platform for $Cu^{2+}$ detection in environmental and biological applications.

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells

  • Lee, Hyo-Joong;Kim, Dae-Young;Yoo, Jung-Suk;Bang, Ji-Won;Kim, Sung-Jee;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.953-958
    • /
    • 2007
  • Anchoring quantum dots (QDs) onto thermodynamically stable, large band gap oxide semiconductors is a very important strategy to enhance their quantum yields for solar energy conversion in both visible and near-IR regions. We describe a general procedure for anchoring a few chalcogenide QDs onto the titanium oxide layer. To anchor the colloidal QDs onto a mesoporous TiO2 layer, linker molecules containing both carboxylate and thiol functional groups were initially attached to TiO2 layers and subsequently used to capture dispersed QDs with the thiol group. Employing the procedure, we exploited cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) as inorganic sensitizers for a large band gap TiO2 layer of dye-sensitized solar cells (DSSCs). Their attachment was confirmed by naked eyes, absorption spectra, and photovoltaic effects. A few QD-TiO2 systems thus obtained have been characterized for photoelectrochemical solar energy conversion.

REPRESENTATION AND DUALITY OF UNIMODULAR C*-DISCRETE QUANTUM GROUPS

  • Lining, Jiang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.575-585
    • /
    • 2008
  • Suppose that D is a $C^*$-discrete quantum group and $D_0$ a discrete quantum group associated with D. If there exists a continuous action of D on an operator algebra L(H) so that L(H) becomes a D-module algebra, and if the inner product on the Hilbert space H is D-invariant, there is a unique $C^*$-representation $\theta$ of D associated with the action. The fixed-point subspace under the action of D is a Von Neumann algebra, and furthermore, it is the commutant of $\theta$(D) in L(H).

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

Effect of thiophenol-based ligands on photoluminescence of quantum dot nanocrystals

  • Moon, Hyungseok;Jin, Hoseok;Kim, Bokyoung;Kang, Hyunjin;Kim, Daekyoung;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.197-197
    • /
    • 2016
  • Quantum dot nanocrystals(QDs) have been emerged as next generation materials in the field of energy harvesting, sensor, and light emitting because of their compatibility with solution process and controllable energy band gap. Especially, characteristics of color tuning and color purity make it possible for QDs to be used photoluminescence materials. Photoluminescence devices with QDs have been researched for a long time. Photoluminescence quantum yield(PL QY) is important factor that defines the performance of Photoluminescence devices. One of the ways to achieve better PL QY is ligand modification. If ligands are changed to proper electron donating group, electrons can be confined in the core which results in enhancement of PL QY. Because of the reason, short ligands are preferred for enhancing PL QY. Thiophenol-based ligands are shorter than typical alkyl chain ligands. In this study, the effect of thiophenol-based ligands with different functional groups are investigated. Four different types of thiophenol-based organic materials are used as organic capping ligand. QDs with bare thiophenol and fluorothiophenol show better quantum yield compared to oleic acid.

  • PDF

Condensable InP Quantum Dot Solids

  • Tung, Dao Duy;Dung, Mai Xuan;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.541-541
    • /
    • 2012
  • InP quantum dots capped by myristic acid (InP-MA QDs) were synthesized by a typical hot injection method using MA as stablizing agent. The current density across the InP-MA QDs thin film which was fabricated by spin-coating method is about $10^{-4}A/cm^2$ at the electric field of 0.1 MV/cm from I-V measurement on a metal-insulator-metal (MIM) device. The low conductivity of the InP-MA QDs thin film is interpreted as due to the long interdistances among the dots governed by the MA molecules. Therefore, replacing the MA with thioacetic acid (TAA) by biphasic ligand exchange was conducted in order to obtain TAA capped InP QDs (InP-TAA). InP-TAA QDs were designed due to: 1) the TAA is very short molecule; 2) the thiolate groups on the surface of the InP-TAA QDs are expected to undergo condensation reaction upon thermal annealing which connects the QDs within the QD thin film through a very short linker -S-; and 3) TAA provides better passivation to the QDs both in the solution and thin film states which minimizing the effect of surface trapping states.

  • PDF

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.