DOI QR코드

DOI QR Code

One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions

  • Tam, Tran Van (School of Chemical Engineering, University of Ulsan) ;
  • Choi, Won Mook (School of Chemical Engineering, University of Ulsan)
  • Received : 2018.04.16
  • Accepted : 2018.07.05
  • Published : 2018.11.30

Abstract

In this work, a green and simple one-pot route was developed for the synthesis of highly fluorescent aminofunctionalized graphene quantum dots (a-GQDs) via hydrothermal process without any further modification or surface passivation. We synthesized the a-GQDs using glucose as the carbon source and ammonium as a functionalizing agent without the use of a strong acid, oxidant, or other toxic chemical reagent. The as-obtained aGQDs have a uniform size of 3-4 nm, high contents of amino groups, and show a bright green emission with high quantum yield of 32.8%. Furthermore, the a-GQDs show effective fluorescence quenching for $Cu^{2+}$ ions which can serve as effective fluorescent probe for the detection of $Cu^{2+}$. The fluorescent probe using the obtained aGQDs exhibits high sensitivity and selectivity toward $Cu^{2+}$ with the limit of detection as low as 5.6 nM. The mechanism of the $Cu^{2+}$ induced fluorescence quenching of a-GQDs can be attributed to the electron transfer by the formation of metal complex between $Cu^{2+}$ and the amino groups on the surface of a-GQDs. These results suggest great potential for the simple and green synthesis of functionalized GQDs and a practical sensing platform for $Cu^{2+}$ detection in environmental and biological applications.

Keywords

Acknowledgement

Supported by : University of Ulsan

References

  1. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications, Small 11 (2015) 1620-1636. https://doi.org/10.1002/smll.201402648
  2. H. Sun, L. Wu, W. Wie, X. Qu, Recent advances in graphene quantum dots for sensing, Mater. Today 16 (2013) 433-442. https://doi.org/10.1016/j.mattod.2013.10.020
  3. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, Chem. Commun. 48 (2012) 3686-3699. https://doi.org/10.1039/c2cc00110a
  4. L. Li, G. Wu, G. Yang, J. Peng, J.W. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives, Nanoscale 5 (2013) 4015-4039. https://doi.org/10.1039/c3nr33849e
  5. Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond, Energy Environ. Sci. 5 (2012) 8869-8890. https://doi.org/10.1039/c2ee22982j
  6. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights, Angew. Chem. Int. Ed. 49 (2010) 6726-6744. https://doi.org/10.1002/anie.200906623
  7. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics, Adv. Mater. 23 (2011) 776-780. https://doi.org/10.1002/adma.201003819
  8. X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. 1 (2008) 203-212. https://doi.org/10.1007/s12274-008-8021-8
  9. Z. Fan, S. Li, F. Yuan, L. Fan, Fluorescent graphene quantum dots for biosensing and bioimaging, RSC Adv. 5 (2015) 19773-19789. https://doi.org/10.1039/C4RA17131D
  10. W. Kwon, Y.H. Kim, C.L. Lee, M. Lee, H.C. Choi, T.W. Lee, S.W. Rhee, Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite, Nano Lett. 14 (2014) 1306-1311. https://doi.org/10.1021/nl404281h
  11. D.Y. Pan, J.C. Zhang, Z. Li, M.H. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv. Mater. 22 (2010) 734-738. https://doi.org/10.1002/adma.200902825
  12. J.H. Shen, Y.H. Zhu, C. Chen, X.L. Yang, C.Z. Li, Facile preparation and upconversion luminescence of graphene quantum dots, Chem. Commun. 47 (2011) 2580-2582. https://doi.org/10.1039/C0CC04812G
  13. J. Ju, W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media, Biosens. Bioelectron. 58 (2014) 219-225. https://doi.org/10.1016/j.bios.2014.02.061
  14. R. Liu, D. Wu, X. Feng, K. Mullen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology, J. Am. Chem. Soc. 133 (2011) 15221-15223. https://doi.org/10.1021/ja204953k
  15. D.W. Domaille, L. Zeng, C.J. Chang, Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor, J. Am. Chem. Soc. 132 (2010) 1194-1195. https://doi.org/10.1021/ja907778b
  16. K.J. Barnham, C.L. Masters, A.I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discov. 3 (2004) 205-214. https://doi.org/10.1038/nrd1330
  17. J. Liu, Y. Lu, A DNAzyme catalytic beacon sensor for paramagnetic $Cu^{2+}$ ions in aqueous solution with high sensitivity and selectivity, J. Am. Chem. Soc. 129 (2007) 9838-9839. https://doi.org/10.1021/ja0717358
  18. G.-Y. Lan, C.-C. Huang, H.-T. Chang, Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions, Chem. Commun. 46 (2010) 1257-1259. https://doi.org/10.1039/b920783j
  19. Y. Zhao, X.B. Zhang, Z.X. Han, L. Qiao, C.Y. Li, L.X. Jian, G.L. Shen, R.Q. Yu, Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for $Cu^{2+}$ in aqueous solution and living cells, Anal. Chem. 81 (2009) 7022-7030. https://doi.org/10.1021/ac901127n
  20. Y. Jeong, J. Yoon, Recent progress on fluorescent chemosensors for metal ions, Inorg. Chim. Acta. 381 (2012) 2-14. https://doi.org/10.1016/j.ica.2011.09.011
  21. Y. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Anal. Chem. 74 (2002) 5132-5138. https://doi.org/10.1021/ac0258251
  22. A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Probing the cytotoxicity of Semiconductor quantum dots, Nano Lett. 4 (2004) 11-18. https://doi.org/10.1021/nl0347334
  23. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS Nano 6 (2012) 5102-5110. https://doi.org/10.1021/nn300760g
  24. J. Gu, M.J. Hu, Q.Q. Guo, Z.F. Ding, X.L. Sun, J. Yang, High-yield synthesis of graphene quantum dots with strong green photoluminescence, RSC Adv. 4 (2014) 50141. https://doi.org/10.1039/C4RA10011E
  25. T.V. Tam, S.G. Kang, K.F. Babu, E.-S. Oh, S.G. Lee, W.M. Choi, Synthesis of b-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction, J. Mater. Chem. A 5 (2017) 10537-10543. https://doi.org/10.1039/C7TA01485F
  26. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano Lett. 12 (2012) 844-849. https://doi.org/10.1021/nl2038979
  27. X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.J. Li, Doping single-layer graphene with aromatic molecules, Small 5 (2009) 1422-1426. https://doi.org/10.1002/smll.200801711
  28. H. Tetsuka, H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots, Adv. Mater. 24 (2012) 5333-5338. https://doi.org/10.1002/adma.201201930
  29. S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups, ACS Nano 7 (2013) 1239-1245. https://doi.org/10.1021/nn304675g
  30. H. Liu, C. Quin, Y.G. Wei, L. Xu, G.G. Gao, F.Y. Li, X.S. Qu, Copper-complex-linked polytungsto-bismuthate(-antimonite) chain containing sandwich Cu(II) ions partially modified with imidazole ligand, Inorg. Chem. 47 (2008) 9413-9419.
  31. Z. Li, L. Zhang, L. Wang, Y. Guo, L. Cai, M. Yu, L. Wei, Highly sensitive and selective fluorescent sensor for $Zn^{2+}$/$Cu^{2+}$ and new approach for sensing $Cu^{2+}$ by central metal displacement, Chem. Commun. 47 (2011) 5798-5800. https://doi.org/10.1039/c1cc10696a

Cited by

  1. Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions vol.186, pp.1, 2018, https://doi.org/10.1007/s00604-018-3140-8
  2. Rapid Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Effective Detection of Ferric Ions and as Fluorescent Ink vol.4, pp.14, 2019, https://doi.org/10.1021/acsomega.9b01612
  3. Synthesis of green-emitting carbon quantum dots with double carbon sources and their application as a fluorescent probe for selective detection of Cu2+ ions vol.10, pp.5, 2020, https://doi.org/10.1039/c9ra08654d
  4. Computational studies and biosensory applications of graphene-based nanomaterials: a state-of-the-art review vol.31, pp.43, 2020, https://doi.org/10.1088/1361-6528/ab996e
  5. Synthesis of graphene quantum dots and their applications in drug delivery vol.18, pp.1, 2020, https://doi.org/10.1186/s12951-020-00698-z
  6. Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength vol.20, pp.5, 2018, https://doi.org/10.1007/s11128-021-03122-z
  7. Recent advances in graphene quantum dot-based optical and electrochemical (bio)analytical sensors vol.2, pp.17, 2021, https://doi.org/10.1039/d1ma00251a
  8. Synthesis of highly fluorescent and water soluble graphene quantum dots for detection of heavy metal ions in aqueous media vol.28, pp.34, 2018, https://doi.org/10.1007/s11356-020-07891-5
  9. Shedding Light on Graphene Quantum Dots: Key Synthetic Strategies, Characterization Tools, and Cutting-Edge Applications vol.14, pp.20, 2021, https://doi.org/10.3390/ma14206153