• Title/Summary/Keyword: quantum dot

Search Result 429, Processing Time 0.027 seconds

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

Multi-Layer QCA 4-to-1 Multiplexer Design with Multi-Directional Input (다방위 입력이 가능한 다층구조 QCA 4-to-1 멀티플렉서 설계)

  • Jang, Woo-Yeong;Jeon, Jun-Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.819-824
    • /
    • 2020
  • In this paper, we propose a new multiplexer using quantum dot cellular automata (QCA), a next-generation digital circuit design technology. A multiplexer among digital circuits is a circuit that selects one of the input signals and transfers the selected input to one line. Since it is used in many circuits such as D-flip-flops, resistors, and RAM cells, research has been conducted in various ways to date. However, the previously proposed planar structure multiplexer does not consider connectivity, and therefore, when designing a large circuit, it uses an area inefficiently. There was also a multiplexer proposed as a multi-layer structure, but it does not improve the area due to not considering the interaction between cells. Therefore, in this paper, we propose a new multiplexer that improves 38% area reduction, 17% cost reduction, and connectivity using a cell-to-cell interaction and multi-layer structure.

Si(111) 기판에 높은 공간밀도를 갖는 InN 양자점 핵생성 연구

  • Lee, Hyeon-Jung;Jo, Byeong-Gu;Lee, Gwan-Jae;Choe, Il-Gyu;Kim, Jin-Su;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.227-227
    • /
    • 2013
  • 본 연구에서는 Si(111) 기판에 성장온도 및 InN 증착양 변화에 따른 InN 양자점(Quantum Dot) 핵성생(Nucleation) 특성에 대해 논의한다. InN 양자점은 Nitrogen-Plasma 소스를 장착한 분자선증착기(MBE)를 이용하여 $0.103{\AA}/s$의 성장속도로 성장하였다. 성장온도를 $700^{\circ}C$에서 $300^{\circ}C$로 변환하면서 형성한 시료에서 lnN 양자점의 공간밀도는 $9.4{\times}10^7/cm^2$부터 $1.1{\times}10^{11}/cm^2$를 나타냈다. 가장 높은 공간밀도인 $1.1{\times}10^{11}/cm^2$는 기존에 보고된 값 ($7.7{\times}10^{10}/cm^2$)보다 상대적으로 높은 값을 갖는다 [1,2]. InN 증착양을 93, 186, 및 $372{\AA}/s$으로 각각 변화시켜 형성하여 양자점의 초기 성장거동을 분석하였다. InN 증착양이 증가함에 따라 양자점의 공간밀도는 $4.4{\times}10^{10}/cm^2$$6.4{\times}10^{10}/cm^2$까지 증가하였다. 일반적으로 InP 및 GaAs 기판을 기반으로 한 In(Ga)As 양자점은 증착양이 증가함에 따라 밀도는 감소하고 크기는 증가하는 경향을 보이며, 이는 같은 상 (Phase)을 갖는 물질들끼리 결합하려는 경향이 있기 때문이다. 본 실험에서는 기존 결과와 다른 경향을 보이고 있는데, 이는 Si(111) 기판과 InN 사이의 격자부정합이 상대적으로 크기 때문에 InN 양자구조가 커지는 대신 추가로 새로운 핵생성 메커니즘에 의한 것으로 설명할 수 있다. 이러한 InN 증착양에 따른 InN 양자점 성장거동을 표면에너지를 포함한 이론적인 모델을 통해 논의하고자 한다.

  • PDF

Effect of the Integrated STEM Project Learning Themed 'Lighting of Quantum Dot Solution' on Science High-School Small-Group Students' Problem Solving and Scientific Attitude ('양자점 용액의 발광'을 주제로 한 융합형 STEM 프로젝트 학습이 과학고등학교 소집단 학생들의 문제해결력과 과학적 태도에 미치는 효과)

  • Yi, Seung-Woo;Kim, Youngmin
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1356-1363
    • /
    • 2018
  • The purpose of this study was to investigate science high-school students' creativity and scientific attitude when an integrated science, technology, engineering and mathematics (STEM) project themed 'lighting of quantum dot solution' was applied to them. The subjects were a one team composed of 3 students in the 11th grade desiring to participate in the Korea Science Exhibition. They began with a scientific inquiry related to the physical properties of the QD solution and then gradually showed the process of expansion of their ideas into the integration of engineering, technology, and mathematics. Also, during the process, they showed problem solving ability and scientific attitudes, such as cooperation, endurance, and satisfaction of accomplishment.

Optimized QCA SRAM cell and array in nanoscale based on multiplexer with energy and cost analysis

  • Moein Kianpour;Reza Sabbaghi-Nadooshan;Majid Mohammadi;Behzad Ebrahimi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.521-531
    • /
    • 2023
  • Quantum-dot cellular automata (QCA) has shown great potential in the nanoscale regime as a replacement for CMOS technology. This work presents a specific approach to static random-access memory (SRAM) cell based on 2:1 multiplexer, 4-bit SRAM array, and 32-bit SRAM array in QCA. By utilizing the proposed SRAM array, a single-layer 16×32-bit SRAM with the read/write capability is presented using an optimized signal distribution network (SDN) crossover technique. In the present study, an extremely-optimized 2:1 multiplexer is proposed, which is used to implement an extremely-optimized SRAM cell. The results of simulation show the superiority of the proposed 2:1 multiplexer and SRAM cell. This study also provides a more efficient and accurate method for calculating QCA costs. The proposed extremely-optimized SRAM cell and SRAM arrays are advantageous in terms of complexity, delay, area, and QCA cost parameters in comparison with previous designs in QCA, CMOS, and FinFET technologies. Moreover, compared to previous designs in QCA and FinFET technologies, the proposed structure saves total energy consisting of overall energy consumption, switching energy dissipation, and leakage energy dissipation. The energy and structural analyses of the proposed scheme are performed in QCAPro and QCADesigner 2.0.3 tools. According to the simulation results and comparison with previous high-quality studies based on QCA and FinFET design approaches, the proposed SRAM reduces the overall energy consumption by 25%, occupies 33% smaller area, and requires 15% fewer cells. Moreover, the QCA cost is reduced by 35% compared to outstanding designs in the literature.

Efficient Quantum Dot Light-emitting Diodes with Zn0.85Mg0.15O Thin Film Deposited by RF Sputtering Method (RF Sputtering 방법으로 증착된 Zn0.85Mg0.15O 박막을 적용한 고효율 양자점 전계 발광 소자 연구)

  • Kim, Bomi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.49-53
    • /
    • 2022
  • In this study, quantum dot light-emitting diodes (QLEDs) of the optimized EL performance with a radio frequency (RF) sputtered Zn0.85Mg0.15O thin film as an electron transport layer (ETL). In typical QLEDs, ZnO nanoparticles (NPs) are widely used materials for ETL layer due to their advantages of high electron mobility, suitable energy level and easy capable of solution processing. However, the instability problem of solution-type ZnO NPs has not yet been resolved. To solve this problem, ZnMgO thin film doped with 15% Mg of ZnO was fabricated by RF sputtering and optimized for the device applied as an ETL. The QLEDs of optimized ZnMgO thin film exhibited a maximum luminance of 15,972 cd/m2 and a current efficiency of 7.9 cd/A. Efficient QLEDs using sputtering ZnMgO thin film show the promising results for the future display technology.

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.

A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers (용액공정 기반 SnO2와 TiO2를 이중 전자수송층으로 적용한 양자점 전계 발광소자의 특성비교 연구)

  • Shin, Seungchul;Kim, Suhyeon;Jang, Seunghun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.69-72
    • /
    • 2020
  • In this study, the inverted structured electroluminescence (EL) devices were fabricated with double electron transport layers (ETLs). The conduction band minimum (CBM) of TiO2 NPs is lower than SnO2 NPs. Therefore, it is expected that inserting TiO2 NPs between the SnO2 layer and the emission layer (EML) will reduce the energy barrier and transport electrons smoothly. The quantum dot light emitting diodes (QLEDs) with double ETLs showed the enhanced emission characteristics than those with only SnO2 layer.

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Recent Progress in Multiplexed Detection of Biomarkers Based on Quantum Dots (양자점 기반 다중 바이오마커 검출법의 연구동향)

  • Kim, Yerin;Choi, Yu Rim;Kim, Bong-Geun;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.451-458
    • /
    • 2022
  • Semiconductor quantum dots (QDs) are optical probes with excellent fluorescence properties. Therefore, they have been applied to various bio-medical imaging techniques and biosensors. Due to the unique optical characteristics of wide absorption and narrow fluorescence energy bands, multiple types of signals can be generated by the combination of fluorescence wavelengths from different QDs, which enables the simultaneous detection of more than two biomarkers. In this review, the advantages and applications of QDs and QD nanobeads (QBs) in multiple biomarker assays were described, and new developments or improvements in multiplexed biomarker detection techniques were summarized. In particular, recent reports were summarized, focusing on the design strategies in immunoassay construction and signal transducing materials for fluorescence-linked immunosorbent assays using QDs and immunochromatographic assays using QBs. New detection platforms will be developed for early diagnosis of diseases and other fields if multiplexed detection technologies of excellent accuracy and sensitivity are combined with artificial intelligence algorithms.