• Title/Summary/Keyword: quantitative risk analysis

Search Result 657, Processing Time 0.041 seconds

Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review

  • Min, Sea-Cheol;Choi, Young-Jin
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.279-293
    • /
    • 2009
  • Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.

Risk Factors Analysis and Quantitative Risk Assessment Model for Tunnel Construction Project (터널 건설 프로젝트 리스크 분석 및 리스크 정량화 모델 개발에 관한 연구)

  • Jeong, Seung-A;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.363-364
    • /
    • 2023
  • The tunnel construction projects is demanded more efficient risk management measures and loss forecasts to prepare for risk losses from an increase in the trend of tunnel construction. This study aims to analyze the risk factors that caused the loss of material in actual tunnel construction and to develop a quantified predictive loss model, based on the past loss record of tunnel construction projects.

  • PDF

A study on the quantitative risk grade assessment of initial mass production for weapon systems (초도양산 군수품에 대한 정량적 위험등급평가 방안 연구)

  • Jung, Yeongtak;Ham, Younghoon;Roh, Taegoo;Ahn, Manki;Ko, Kyungwa
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.441-452
    • /
    • 2018
  • Purpose: The purpose of this paper is to study quantitative risk grade assessment for objective government quality assurance activities based on risk management in initial mass production for weapon systems. Methods: The Defense quality management regulations and foreign risk assessment documents are referred to analyze problems performing quality assurance actives. The failure rate data, maintainability and cost of products have been studied to quantify the risk Likelihood and impact. The analyzed data were classified as risk grade assessment through K-means Cluster Analysis method. Results: Results show that a proposed method can objectively evaluate risk grade. The analyzed results are clustered into three levels such as high, middle and low. Two products are allocated high, eleven low and seven middle. Conclusion: In this paper, quantitative risk grade assessment methods were presented by analyzing risk ratings based on objective data. The findings showed that the methods would be effective for initial mass production for weapon systems.

A Study on Quantitative Software Risk Management Methodology applied Risk Analysis Model (위험분석 모델을 적용한 정량적인 소프트웨어 위험관리 방법론에 관한 연구)

  • Eom, Jung Ho;Lee, Dong Young;Chung, Tai M.
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • In the paper, we proposed the systematical and quantitative software risk management methodology based on risk analysis model. A software risk management consists of the basic risk management method(BRIMM) and the detailed risk management method(DRIMM). BRIMM is applied to unimportant phases or the phase which also the risk factor does not heavily influence to project. DRIMM is used from the phase which influences highly in project success or the phase where the risk factor is many. Fulfilling risk management combined two methods, we can reduce project's budget, term and resource's usage, and prevent risk with the optimum measures obtained by the exact risk analysis.

A Study on Reliability Analysis and Quantitative Risk Analysis for Liquefied Petroleum Gas Station (LPG 충전시설에 대한 신뢰도 분석과 정량적 위험성 분석에 관한 연구)

  • Kim In-Won;Jin Sang-Hwa;Kim Tea-Woo;Kim In-Tae;Yeo Yeong-Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.40-48
    • /
    • 2001
  • For a Liquified Petroleum Gas(LPG) station, the reliability analysis, such as Fussell-Vesely importance, risk decrease factor and risk increase factor, was carried out and the risk ranks of events were determined. In order to confirm the degree of the risks identified in the reliability analysis, the quantitative risk analysis was done for the equipments which had the large values of risk ranks. As a result of the importance analysis for the LPG station, the external event was identified as the most riskful event. The defect of construction structure and the pipe corrosion were riskful as well. The result of quantitative risk analysis showed that the length of 46.3 meters were estimated to damage the process equipments by the thermal flux from the catastrophic rupture of storage tank in Boiling Liquid Expanding Vapor Explosion.

  • PDF

Risk Assessment Method for Guaranteeing Safety in the Train Control System (열차제어시스템 안전성 확보를 위한 리스크 평가 방법 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Yoon, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.870-877
    • /
    • 2006
  • Recently, failures of equipments are linked directly to extensive damages of human lives or financial losses from the increasing uses of train control equipments utilizing computers. Then safety activities have to progress for guaranteeing safety during the system life-cycle. In this paper, we examine the methods for risk analysis and assessment of safety activities and propose optimized one method for risk assessment. There are original risk assessment methods; risk graph and risk matrix method under the qualitative analysis, IRF(Individual Risk Formula) calculations and statistical calculations method under the quantitative analysis. Best-Practice(BP) risk analysis method is proposed for combining advantages of the qualitative and the quantitative analysis. In the comparison of risk graph and risk matrix method for safety estimation, BP method has no applications published up to now, but we can expect that this method will be utilized widely for the risk assessment due to various strong points.

  • PDF

Considerations for Quantitative Risk Assessment of Landslides using GIS (GIS기반 산사태재해의 정량적 피해 산정을 위한 고려사항 분석)

  • Kim, Jung-Ok;Kim, Ji-Young;Kim, Hyo-Joong;Kim, Yong-Il
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.645-648
    • /
    • 2008
  • This study provides considerations for quantitative risk assessment of landslide on GIS technology. It shows how the landslide possibility analysis is linked by GIS modeling to provide loss estimation tools for landslide hazards in support of socio-economic loss reduction efforts. Those risk assessment results can deliver factual damage situation prediction to policy making for the landslide damage mitigation.

  • PDF

An Evaluation of the Quantitative Risk of Plastic Process Manufacturing Industries by Means of the 4M Method

  • Lee, Dong-Ho;Kim, Jong-In
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.8-12
    • /
    • 2007
  • This study includes a case study among plastic process manufacturing companies, based on which, the currently used 4M method is applied in terms of machine, media, man, and management, to conduct quantitative risk evaluation, and thus to contribute to reducing human and material loss as well as preventing accidents in industrial fields. The result of this study is analyzed based on the 4M-risk assessment to find out the hazardous risk elements, and the quantitative evaluation made it predictable the value of risk(frequency $\times$ intensity) in such classified levels as serious risk, critical risk, and intolerable risk. Further, Among the businesses with hazardous risk elements and high frequency of industrial disaster, risk analysis was conducted for each process, and as a result, 38 cases among 76, including those of serious risk, critical risk, and intolerable risk, were improved, and the risk was reduced. Besides, it is thought that with the engineering approach with 4M-Risk Assessment, the attempt to improve safety level contributes to prevention of accidents.

Cost-Benefit Analysis for Safety Management Cost using Quantitative Risk Analysis (정량적 위험성 평가에 의한 안전관리 투자의 비용-편익분석)

  • 장서일;조지훈;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.15-26
    • /
    • 2002
  • The quantitative evaluation method of the safety management cost was suggested to prevent a gas accident as a major industrial accident. In a gas governor station, process risk assessments such as the fault tree analysis(FTA) and the consequence analysis were performed. Based on process risk assessments, potential accident costs were estimated and the cost-benefit analysis(CBA) was performed. From the cost-benefit analysis for five classification items of safety management cost, the order of the cost/benefit ratio was estimated.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.