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Abstract Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by
its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational
designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification
procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and
analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of
microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.
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Introduction

Many mathematical models describing growth and inhibition
of microorganisms have been developed in past years. By
a quantitative approach using the models, either a worst-
case, what-if, or statistical approach can be made in risk
assessment (1).

The quantitative risk assessment (QRA) is a useful tool
that has emerged for assessing risk of foodborne illness (2).
The risk assessment is typically done in a computer
environment using alternate assumptions and situations and
consists of 4 main steps: hazard identification, hazard
characterization, exposure assessment, and risk characterization
(3,4).

1. Hazard identification: The presence of a pathogen in
a food is associated in this step. The hazard identification
involves identification of any microbiological agents
in foods capable of causing adverse health effects (3).

2. Hazard characterization: Hazard characterization is
the qualitative and quantitative evaluation of the
nature of the adverse health effects associated with
microbiological agents in food.

3. Exposure assessment: Exposure assessment is the
qualitative and quantitative evaluation of the intake of
microbiological agents via food. It estimates pathogen
population and the likelihood of its being ingested by
consumers.

4. Risk characterization: Risk characterization involves
qualitative and quantitative estimation of the probability
of occurrence and severity of known or potential
adverse health effects in a given population. Results
from hazard identification, hazard characterization,
and exposure assessment are incorporated into the
risk characterization.

Microbial modeling in quantitative risk assessment has
been rapidly developed, resulting in many publications
regarding their applications, including hazard analysis and
critical control point (HACCP) implementations. Thus, there’s
a need to review the modeling critically. The objectives of
this paper are to (i) describe fundamental information
about QRA, (ii) review the use of QRA for the HACCP
systems, (iii) provide mathematical models available for
QRA, and (iv) discuss about usages of the models to
conduct QRA.

Quantitative Risk Assessment (QRA)

QRA for the HACCP The objectives of risk assessment
are as follows (1,3,5):

1. To answer 3 risk questions about (i) what can go
wrong, (ii) how likely is it, and (iii) what would be the
consequences if it goes wrong.

2. To identify the critical control point (CCP) for a
HACCP system, which is defined as any step where
control can be applied that is essential to prevent or
eliminate a hazard or reduce it to an acceptable level
(6).

3. To validate the critical limit at CCPs, which is defined
as the maximum or minimum value to which a
microbiological hazard must be controlled at a CCP
to prevent, eliminate, or reduce the identified hazard
to an acceptable level (6).

4. To predict consequences of an insufficient control of
a critical control point.

5. To provide information, which is used to identify
interventions that can prevent relevant risks.

6. To enable the rational design of new processes and
products to meet required levels of safety and shelf
life.

7. To evaluate processing operations.
8. To be used as an educational tool, particularly for non-

technical people, by generating graphs.
9. To save resources, time, labor, and costs using models.
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Food safety regulatory agencies are taking a new approach
to ensuring the safety of food supply based on the HACCP
system (3). The objectives 1 through 7 are related to planning
and implementation of HACCP systems. The hazard analysis,
as a part of the implementation of a HACCP system, can
be transformed into a more meaningful managerial tool by
using elements of QRA. QRA can be used to determine
which hazards should be essential to control, reduce, or
eliminate (3). The QRA is also a tool to derive or validate
control measures and critical limits at CCPs. The effect of
control measures can be quantified, which enables
occurrence of contaminants in the end-products estimated.
Thus, risk assessment can help in developing more
effective HACCP plans. Obvious users for QRA are
agencies and regulators responsible for food inspection,
food standards, and disease surveillance.

Microbial modeling Modeling quantifies the effects of
the interactions between two or more factors and allows
interpolation of combinations of factors not explicitly
tested. A practical control of microorganisms depends on a
combination of preservative factors, with none of the
factors at levels capable of inhibiting the microorganisms
by themselves. Mathematical models are the best way to
make predictions in these circumstances (7).

Models can provide useful information for making
decisions in safety-related situations. For example, a time-
to-growth can estimate whether there is likely to be a risk
in a particular food after a specified time-temperature
storage. Models also can show which factor has the major
influence (7). The consequences of an alteration in process
events, such as changes in preservative formulations or
thermal-treatment conditions, can also be immediately
determined using models.

Stepwise procedure for QRA A procedure for stepwise
QRA has been developed (8). In level 1 of the procedure,
rough risk assessments are performed in which orders of
magnitude for microbial processes are estimated by the use
of simple models. Second, the main determinants of risk
are studied more accurately and quantitatively. This
method identifies the scope of the most important hazards,
the risk-determining process steps, and risks. The results of
level 1 are used in level 2. In level 2, specific models are
generally used to describe the risk-determining phenomena
quantitatively. The results of the models can then be
compared, to estimate risk on a broad basis. Also in level
2, effects of possible changes in process or product
parameters can be estimated. The results of level 2 can be
used in level 3, which is the most detailed level, conducting
calculations and simulations using detailed-specific models
(e.g., stochastic models) (8).

Mathematical Models

Mathematical models for QRA have been considered
under 2 main headings: Growth-inhibition models and
probability models. The growth-inhibition models describe
the growth rate of microorganisms of concern. The probability
models predict the likelihood of a event (e.g., spore
germination) within a given time period (9). Mathematical
models are recommended to be validated by experiments

before use (10).
The hypotheses underlying the modeling approach are

that nutrients will not limit growth until spoilage has occurred
or infectious dose levels are exceeded and environmental
factors (e.g., temperature, pH, and water activity (Aw),
gaseous atmosphere) rule the rate and extent of microbial
proliferation. A detailed knowledge of the growth responses
of microorganisms to those environmental factors enables
prediction of the extent of microbial proliferation in foods
during processing, distribution, and storage by monitoring
the environment presented to the microorganism (9).

Growth-inhibition models can be divided by primary,
secondary, and tertiary models (11). Primary models describe
the growth or inactivation curve or probability of growth;
secondary models describe the kinetic parameters of primary
models in terms of environmental conditions; tertiary models
integrate data for all aspects of responses of microbes to
their environment into expert systems or decision support
systems (8).

Primary growth models Most of the models shown in
Table 1 are empirically-used equations or analytical
solutions of differential equations, describing the number
of microorganisms at a time under constant environmental
conditions.

The simplest way to describe growth is by assuming
first-order kinetics. Growth can then be described by an
exponential function (Table 1). Little attention has been
paid to modeling the duration of the stationary phase or the
decline phase because food is usually overtly spoiled and
can contain a high level of pathogens by the time this phase
begins. However, fermented foods and some vacuum
packed foods are important exceptions (12).

Orders of magnitude for growth can easily be estimated
by using the exponential growth function, neglecting lag
time (l) and stationary growth (Table 1). The assumption
l=0 results in fail-safe predictions. On the basis of the
estimated order of magnitude, it can be decided whether
growth is one of the main determinants of risk (8).

Bacterial growth is also often described by sigmoidal
curves. Several sigmoidal functions used to describe the
growth curve empirically are the logistic, Gompertz, Richards,
Schnute, and Stannard models (13). The Gompertz model,
introduced by Gibson et al. (14), has become the most
widely used primary model for describing microbial
growth (7) (Table 1). Zwietering et al. (15) statistically
compared the sigmoidal functions for describing the
growth of Lactobacillus plantarum and concluded that the
Gompertz function was statistically sufficient to describe
the growth and was the easiest to use.

The Baranyi (16) model also has an important practical
advantage over most other sigmoidal models and probability
models (13,17). However, the Baranyi model is less
empirical than the Gompertz. An important disadvantage
of the Gompertz model is that it does not give exactly n=n0
at t=0. For relatively short processes the lack of this
information may have significant effects on predicted
growth (8).

Secondary growth models Secondary models describe
the influence of environmental factors (e.g., temperature,
pH, and water activity) on the parameters of primary model
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(12). Secondary kinetic models can be divided into 4 main
model types: (i) Belehradek or square root type models, (ii)
Arrhenius type models, (iii) modified Arrhenius or Davey
models, and (iv) polynomial or response surface models
(7,8). Examples of the secondary growth models are shown
in Table 2.

The gamma model is a square root type of model and
uses dimensionless growth factors to calculate the relative
effects of environmental variables on the specific growth
rate (Table 2). The growth factors are defined for pH, water
activity, and temperature. The gamma model determines a
specific growth rate and provides quantitative insight into
the relevance of several environmental conditions for
growth (8). The gamma model is often applied since the
parameters can be found in literature for many pathogens.
The gamma model is simple in structure, easy to interpret,
and has few parameters. Moreover, new variables can
easily be included in the model.

Polynomial models are a group of secondary growth
models (Table 2). Multiple linear regression is often used
to determine the best fit values for the parameters in
polynomial models. Due to the fact that the parameters are
determined only to obtain best fits to data, the parameters
are not biologically meaningful.

Primary inactivation models Some examples of inactivation
models are shown in Table 3. For many years, thermal
inactivation has been described by first-order kinetics. In
past years, other models have been developed, which
found significant deviations from log linear inactivation
(8). The main practical problem of the present thermal
inactivation models is that they are still hard to be used for
general predictive purposes because of the lack of
parameter values for tailing and shoulders phenomena (8).

Secondary inactivation models Several secondary
inactivation models have been developed relating inactivation
parameters to environmental factors. The model types
resemble secondary growth model types. The model types
shown in Table 3 are linear Arrhenius-Davey and polynomial
models. The use of secondary models is generally largely
restricted because the parameters of the models are often
very specific (8).

Probability models Currently, most of the models
predicting the microbial load are deterministic, predicting a
single value for an output. However, the microbial quality
and safety need to be characterized by a certain level of
variation. Typical examples of variation are: variation in
growth conditions (e.g., temperature, pH, and water activity),
measurement uncertainty, and variation among strains (18).
Variability and uncertainty in models describing pathogen
populations in food are accommodated through the use of
probability models. The QRA offers a way to organize and
combine published data from different laboratories into
probability distribution functions (PDFs), which can be
more reflective of the survival of target microorganisms
than data from any single article (2). Stochastic prediction
using probability models is a key element for performing
QRA (18).

Monte Carlo simulation is a general method to deal with
stochastic models. The simulation has been applied for

QRA (19-22). To obtain the Monte Carlo simulation, a
deterministic mathematical model fit on the experimental
data is assumed to generate a perfect dataset. The model
prediction at each point of independent variable is
considered as the mean value of a normal distribution. This
results in a dataset, which can include a perturbation of the
perfect dataset and thus a realistic representation of a
dataset. This dataset is subsequently fitted with a growth
model or inhibition model. The procedure of fitting of data
is repeated many times (more than 100 times) with
different values selected from the probability distributions
of parameters. The Monte Carlo simulation, thus, results in
distributions of parameters of the used model (18).

Sensitive analysis The difference in the model output
due to the change in the input variable is referred to as the
sensitivity. Sensitivity analysis of risk models is used to
identify the most significant risk factors (3). The characteristics
and usages of the most common methods for sensitivity
analysis are summarized in Table 5.

The response surface model is a regression equation that
is fitted using standard regression techniques. The model
may contain linear quadratic, cubic, or reciprocal terms and
include interaction or cross product terms (3). Methods
such as regression analysis and response surface method
(RSM) may not be able to provide robust insights either
because they assume linearity or because they require
specification of a functional form. Analysis of variance
(ANOVA) and scatter plots are model independent.
ANOVA is used for a probabilistic analysis, but does not
provide insight into the relationship between the output and
the most sensitive inputs directly.

Different sensitivity method can lead to different rank
ordering of risk factors because each sensitivity analysis
method is typically based on a different assumption regarding
appropriate ways of measuring sensitivity. Thus, applying
two or more methods, preferably with dissimilar foundations,
is generally recommended to increase confidence on the
identification of risk factors (3). The comparison can
provide insight regarding whether the methods perform
similarly in practice despite different theoretical foundations
(3,8).

Tertiary models Tertiary levels are computer software
routines that turn the primary and secondary level models
into user-friendly programs (7,12).

The US Department of Agriculture (USDA)’s Pathogen
Modeling Program (PMP) is computer-based software,
which estimates the growth or inhibition of foodborne
microorganisms in food counting such factors as growth,
lethality, and survival in culture broth and food products
(23). Growth models based on the primary Gompertz
function and secondary-response surface equations were
combined into the PMP. The program has a series of menu
screens asking for input on the desired models, interesting
microorganisms (e.g., Bacillus cereus, Clostridium
botulinum, Escherichia coli O157:H7, Listeria monocytogenes,
Salmonella, Shigella flexneri, Staphylococcus aureus, and
Yersinia enterocolitica) and environmental conditions (e.g.,
pH, sodium chloride level, temperature, and nitrite
concentration). The PMP is available without charge from
http://ars.usda.gov/Services/docs.htm?docid=6786. The
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Table 1. Primary growth models for quantitative risk analyses

Model Variables and parameters Characteristics References

Ln(n)=ln(n0)+µ · t n: number of microbial cells 
n0: initial number of the cells
µ: specific growth rate
t: time

Simplest model. No exponential nor sigmoidal curves. (7)

Baranyi model

Ln(n)=ln(n0)+µmaxAn(t)−
Ln(1+(exp(µmaxAn(t))−1)/(exp(A))

µmax: maximum specific growth rate, 
A: maximum level of increase (ln (n

∝
/n0))

Models have an important practical advantage over most 
other sigmoidal models and probability models.
This model is less empirical than the Gompertz function.

(16)

Gompertz model

nt=n0+a1exp(−exp(−a2(t-τ)))

a1: difference in log10 counts between the inoculum and the 
stationary phase
a2: a slope term
τ: time at the inflection point

The model was used for parameterizing the growth of C. 
botulium.

(7, 12)

Gompertz model

Ln(Mt/M0)=a2exp{−exp[(µe/a2)(t1−t)+1]}

a2: log difference in cell numbers from inoculum to 
stationary phase
µ: maximum specific growth rate
t1: lag time

The parameters in the Gompertz model were reformed to 
have the parameters directly represent the growth rate and 
the lag phase.

(7, 15)

Mt=a5+[a6/(1+exp(τ−t/g))] Mt: population at time t measured in optical density units 
a5: value of the lower asymptote (ª M0) 
a6: maximum population 
t: time at the inflection point 
g: generation time 

The logistic function is similar in shape to the Gompertz 
model. 

(29)

dM/dt=α(t)µ(N)M α(t): adjustment function whose value depended on the 
environmental change 
µ(N): potential specific growth rate
α(t)µ(N): actual specific growth rate

This model was developed with an emphasis on lag phase 
reflecting the time necessary for a cell to adjust to the new 
environment.
Generally, the smaller the initial value of α, the longer the 
lag phase and the slower initial growth rate.

(7, 30)
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Table 1. Continued

Model Variables and parameters Characteristics References

nt=nmax−ln(1+(exp(nmax−n0)−1)exp(−µmaxA(t)) nt: logarithm of population 
n0: logarithm of initial population
nmax: logarithm of the maximum population 
µmax: maximum specific growth rate 
A(t): definite integral of the adjustment function 

This model describes a lag and exponential growth phase. 
The fits of a set of Listeria growth data by this function 
estimated the growth rate to be about 10% slower than 
those determined using the Gompertz function. This 
discrepancy was attributed to the Gompertz slope being too 
steep at the inflection point relative to the entire 
exponential phase slope. 
The 4-parameter model fitted growth data better than the 
Gompertz function as judged by goodness-of-fit and 
standard errors of the estimates. 

(7)

MB=MAexp(k1 · t) MA and MB: populations for the initial and activated cells 
k1: rate parameter
The exponential growth rate was
MB=MC/2(t/g),
where MC was the population of actively growing cells and 
g was designated as the generation time.
g=a1+a2 ∑ (population×time),
where a1 was the basic generation time and a2 was the sum-
growth parameter. 

Whiting and Cygnarowicz-Provost (31) constructed the 
growth and decline model by assuming that spore 
germination, lag phase, or recovery from injury was a first-
order process or that the apparent rate was controlled by a 
single first order step.

(7, 31)

With

Y1t=a1[1−(1+(t/a2)+(t/a3)2+(t/a4)3/6)exp(−t/a5)],
representing a growth function and

Y2t=exp((t−a6)/a5)−exp(−(t−a4)/a5)−exp(−a4/a5)+exp(a4/
a5),
representing a death function

a1-a6: model parameters 
Mt: population 
M0: initial population

The model accurately fitted the growth and decline of 
Yersinia enterocolitica in broths of varying pH and sodium 
chloride concentrations stored at different temperatures.

(7, 32)
M

t
M

0
2

Y
1t

Y
2t

–( )
=
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Table 2. Secondary growth models for quantitative risk analyses

Model Variables and parameters other than time (t) Characteristics References

Square root models

µ=c×(temperature−Tmin)
2

Tmin: theoretical temperature at which the growth rate of 
the modeled organism is predicted to be zero based on the 
extrapolation of the regression line fitted to the data.
Consider two temperatures, Tref, a temperature at which the 
growth rate (µref) of the organism is known, and Ttest at 
which we want to estimate the growth rate, µref, then:

The term  derives the 

growth rate at one condition from that measured at some 
other condition
a1: slope for the increasing rate 
Tmin: extrapolated temperature at k=0 for the increasing 
rate (notional minimum temperature for growth) 
a2: slope for the decreasing rate 
Tmax: extrapolated temperature at k=0 for the decreasing 
rate
k: rate of growth 
b: coefficient to be estimated
Aw: water activity 
Awmin: a notional minimum water activity for growth 
pHmin is a notional minimum pH for growth

Easy to interpret.
Parameters can be found in literature. 
Nonlinear regression if pH and/or Aw are included.
No theoretical foundation.

(12, 33-35)

Square root: gamma model Parameters found in literature. 
For every variable relative effect can be calculated. 
Nonlinear regression if pH and/or Aw are included.

(8, 36)

k a
1
T T

min
–( ) 1 a

2
T T

min
–( )[ ]exp–{ }=

k b Aw Awmin
–( ) pH pH

min
–( )[ ]1 2⁄

T T
min

–( )=
µtest µref

c Ttest T
min

–( )2×

c Tref T
min

–( )2×
------------------------------------×=

µtest µref

Ttest T
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–( )
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–( )

---------------------------
2

×=
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2
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⎝ ⎠
⎛ ⎞

2
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pH pH
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–( ) pH
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–( ) pH
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Aw Awmin

–

1 Awmin
–

-----------------------=
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Table 2. Continued

Model Variables and parameters other than time (t) Characteristics References

Gamma concept
µ: rate of growth

The model relies on the observation that many factors 
that affect microbial growth rate act independently, and 
each measurable factor can be represented by a discrete 
term that is multiplied by each other term.
The cumulative effect of many factors at suboptimal 
levels can be estimated by multiplying the relative 
inhibitory effect of each factor. 

(9, 36)

Arrhenius-Eyring R and T: universal gas constant and absolute temperature, 
respectively
ρ(25): scaling factor equal to the response rate (1/K) at 
25oC
HA: activation energy of the rate-controlling reaction 
HL: activation energy of denaturation of the growth-rate-
controlling enzyme at low temperatures 
HH: activation energy of denaturation of the growth-rate-
controlling enzyme at high temperatures 
T1/2L: lower temperature at which half of the growth-rate-
controlling enzyme is denatured 
T1/2H: higher temperature at which half of the growth-rate-
controlling enzyme is denatured

Parameters often used as fit parameters, instead of 
estimates of biologically relevant parameters.

(9, 37, 38)

Linear Arrhenius-Davey a, b, c, d, and e: fit parameters
E: enthalpy
R: gas constant 
T: temperature in Kelvin
an: model parameters
k: rate of growth

A linear Arrhenius model for the effect of temperature 
and Aw was determined in foods by Davey to 
satisfactorily predict growth rates.
Parameters are not biologically meaningful.

(7, 8, 
39-41)

F1: fraction of population in the major group 
k1: inactivation rate parameter for the major population 
k2: inactivation rate parameter for the subpopulation 
t=time
t1: lag period

A logistic model was proposed by for enhanced thermal 
destruction of L. monocytogenes and S. aureus by a 
lactoperoxidase system. The model was expanded to 
include a shoulder and two slopes

(7, 42)

Polynomial model a, b1,2,…z: model parameters
X1,2,…,i,j: variables

Only applicable to the situation for which it was 
developed. Extrapolation is not allowed.
It does not have theoretical foundation.
Parameters are not biologically meaningful. 
The model uses many parameters, which can lead to 
description of errors.

(8, 9)

µ f temperature( ) f aw( )× f pH( )× ×=
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Table 3. Inactivation models for quantitative risk analyses

Type Model Variables and parameters Characteristics References

Primary k=2.303/D
t=time

Exponential (8)

Primary θ: position of maximum slope
θi: time constant for inactivation
θai: combined time constant for inaction and activation
n0a, n0d: initial population sizes of activated spores and 
dormant spores respectively 

Mainly focused on description of shoulder.
Used for activated and dormant spores

(43)

Primary F1, 1-F1: two fractions of bacteria 
k1, k2: specific inactivation rates for the two fractions

Mainly focusing on tailing. (42)

Primary Gompertz model a, b, c: fit parameters Empirical (44)

Secondary a, b, c, d: fit parameters 
T: temperature in Kelvin

Linear Arrhenius-Davey (45)

Secondary a, b1, b2, …, bz: fit parameters 
T: temperature in Kelvin

Polynomial (46)

Ln n( ) n
0

( )ln kt–=

n n
0a

n
0d

+( )
t–

θ
i

----exp n
od

t–

θ
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------exp–=
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T
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c
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d
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2
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Table 4. Probability models for quantitative risk analyses

Model Characteristics References

,

where RI is the number of cells inoculated into the system and RG is the number having initiated 
growth, a, b1,…,b5 are coefficients to be determined

The effect of environmental conditions on the probability (P) of a single cell 
initiating growth was modeled by the polynomial expression.

(9)

,

where the effect of environmental variables is expressed in ‘y’ by the expression:

,

where b1,…,b4 are coefficients to be determined, T is temperature, St the elapsed time, and where LP, 
the time to toxigenesis, was modeled by:

,

where I is the inoculum concentration, and a, b5,… b7 are values to be determined.

Lindroth and Benigeorgis (47) recognized that the probability of growth 
detection within a given time was dependent upon the lag time and initial 
inoculum density. 

(9, 47)

,

where P(t) is probability of growth at time t, Pmax is maximum probability, k is a rate constant, and θ 
is time to the midpoint of the function

The model was developed to describe the probability of one spore or 
vegetative cell initiating growth and toxigenesis.

(48)
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Table 5. Sensitivity analysis methods

Method Characteristics Use References

Nominal range sensitivity 
analysis
(Local sensitivity analysis 
or threshold analysis)

<Advantage>
Relatively simple method that is easily applied.
Easy to understand.
<Disadvantage>
The model does not include effect of interactions or correlated inputs.
The results can be used to rank order risk factors only if there are no significant 
interactions among the inputs, and if ranges are properly specified for each input.
Analysis can be repeated for any number of individual model inputs.
It needs nominal range for each input.

The method evaluates the effect of a model input on outputs by 
individually varying only the model inputs across its entire range 
of plausible values, while holding all other inputs at their nominal 
values.
The results of nominal range sensitivity are most valid when 
applied to a linear model. The results are potentially misleading 
for nonlinear models.

(3, 49)

Regression analysis If the coefficient is statistically significant, then there is strong evidence of sensitivity.
The magnitude of statistically significant regression coefficients can be used to help 
determine the ranking of the inputs according to their sensitivity if the inputs or the 
coefficients are normalized (between -1 and 1 by correlation transformation) to 
remove dimensional effects. By normalization, the round-off errors can be minimized 
and all regression coefficients have the same unit; hence, regression coefficients can 
be compared on an equal basis.
<Advantage>
Generalized linear models (GLM) (e.g., Logistic regression and Poisson regression) 
provide flexibility to use correlated input data and non-normal error distributions
<Disadvantage>
It works best only if each input is statistically independent of every other input.
The residuals of a least squares regression analysis must be normally distributed and 
independent. 

Most properly performed on an independent random sample of 
data.

(3, 49, 50)

Analysis of variance 
(ANOVA)

The output is assumed to be normally distributed. 
<Advantage>
No assumption is needed regarding the type of underlying model and both continuous 
and discrete inputs can be analyzed using ANOVA.
<Disadvantage>
If the inputs are correlated, then the effect of each individual input on the response 
variable can be difficult to assess.
Time consuming for a large number of inputs with interactions.

ANOVA determines whether there is a statistical association 
between an output and one or more inputs.

(3, 50, 51)
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Table 5. Continued

Method Characteristics Use References

Response surface method 
(RSM)

Monte Carlo simulation methods are typically used to generate multiple values of each 
model input and to calculate corresponding values of the model output. 
<Advantage>
It is easy to apply iterative numerical procedures to the response surface, such as 
optimization or Monte Carlo simulation, compared to the original model.
The values of its coefficients may provide a useful indication of sensitivities. 
<Disadvantage>
Most response surface studies are based on fewer inputs than the original model. Thus, 
the effect of all original inputs on the sensitivities cannot be evaluated in the response 
surface method.

The method used to represent the relation between a response 
variable and one or more explanatory inputs.
Sensitivity of the model output to one or more of the selected 
input can be determined by inspection of the functional form of 
the response surface. 
It is employed for an optimization of processes.
Graphical.

(3, 50, 52)

Scatter plot A graphical sensitivity analysis method.
<Advantage>
Graphical
The method is easy and often recommended as a first step in sensitivity analysis. 
<Disadvantage>
No quantitative sensitivity

An input value and the corresponding output value are plotted as 
points on a scatter plot.
It allows for the identification of potentially complex 
dependencies between inputs and an output. An understanding of 
the nature of the dependencies can guide the selection of other 
appropriate analysis methods.
Visual assessment of the influence of individual inputs on an 
output.

(3, 54)
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PMP would be a useful tool for (23):
1. Estimating bacterial growth or decline in a particular

food at specific time and temperatures.
2. Identifying potential critical control points where the

model indicates that at a certain level controllable
factors will either permit or suppress microbial growth.

3. Reformulating product based on conditions that
influence microbial growth.

4. Providing graphical modeling tools that can be used
as instructional aids for demonstrating to employees
the impact of HACCP implementation.

Food micromodel was developed by a consortium of
industry and government researchers (12). It has predictive
equations for growth, survival, and death of pathogens.
Growth models for L. monocytogenes, Y. enterocolitica, B.
cereus, Campylobacter jejuni, psychrotrophic C. botulinum,
Salmonella, and S. aureus include the factors of temperature,
pH, and water activity (7). The program is available from
http://www.lfra.co.uk/micromodel/index.html.

Food spoilage predictor (http://www.hdl.com.au/html/
products.htm) is commercial software that models the
effect of water activity and fluctuating temperature on the
growth of psychrotolerant pseudomonds (12). The model
has been extensively validated in milk, meat products, and
seafood (12).

Seafood spoilage predictor was developed to predict
shelf life of seafood at different storage temperature. The
software can evaluate the effect of fluctuating temperatures
on shelf life of seafood determined by specific microorganisms
(12). It is available without charge from http://www.dfu.
min.dk/micro/ssp/.

A proposed international web-based compendium of
models and growth data, termed ‘ComBase’ is also well
advanced (http://wyndmoor.arserrc.gov/combase/) (12).

Variability

Variability in virulence and the growth responses of
different strains of the same species exists (24). Specifying
the magnitude of this variability is important in QRA to
indicate the confidence of predicted parameters (12). The
nature and magnitude of variability and uncertainty associated
with predictive models is not completely understood. In
some models, the upper and lower confidence intervals are
missing (23).

The magnitude of the variability in response times of
microorganisms is usually highly skewed, necessitating
model fitting with some mathematical transformation of
the measured response (12). A logarithmic transformation
of values for time parameters are frequently closer to being
normally distributed than untransformed values (7).

Models have been used on representative strains or
mixtures of representative strains to characterize the range
of growth responses that correspond to the environment. A
worst-case situation that all unfavorable events occur at the
same time is inherent in many predictive models that may
lead to conservative control measures or an overestimation
of the risk (1,25).

Model Selection

Models using a large number of parameters (e.g., higher-

order polynomials) were more prone to unreliability
because the predictions of such models often changed
dramatically near the limits of the interpolation region (12,
26). Comparison of results from different models does not
always substantially contribute to a broad view on risk if
process variations are more significant than model
variables, which rules out differences between models. In
this case, the accuracy of the model predictions does not
justify the use of more complex models and it would be
efficient to use the simplest model available (8).

The exponential model is the simplest dose-response
model used in microbial risk assessment and predicts a
direct proportionality between dose and risk of illness
below the asymptotic dose. The Beta-Poisson and
hypergeometric models also predict a direct proportionality
between dose and risk of infection in the low-dose region
(12).

Even though the use of stochastic variables may not
change the conclusions from non-stochastic models, the
variations of predicted parameters and risk factors are
recommended to be presented stochastically to determine
the significance of the variations.

Considerations Prior to Applications

It is not yet possible to rely solely upon any predictive
modeling programs to determine the safety of foods and
processing systems. They usually cannot include all
influences on bacterial growth and survival and do not
consider the protective buffering effects of various food
components when converting predictions from experimental
broth cultures to different food matrices.

The models in the programs do not include the
inhibitory or supporting effect that endogenous bacteria
and their population may have on pathogens. These effects
will vary in different seasons, locales, climates, and other
unforeseen events in an establishment.

The models do not usually account for increased
resistance of bacteria to certain treatments, induced by
prior conditioning of cells, such as heat shock (23).

Predictive modeling programs must not simply replace
microbial validation, experimental challenge studies, or the
judgment of a trained and experienced microbiologist in
hazard analysis (23). Predictive modeling programs need to
be used as support tools. They should be used in a
conservative manner and other factors should play a role in
making critical decisions about a process or deviation (23).
The Food Safety and Inspection Service (FSIS) does not
approve nor advise industry on the proper use of specific
modeling programs (23).

Developing reliable QRA will require the skills of both
microbial ecologists and mathematical modelers (12). Model
developers must specify assumptions and limitations of the
models. The type of microorganisms and the ranges of
factors need to be clearly described to validate the models.

Directions for Microbial Modeling

Additional factors (e.g., anion effects from acidulants) need
to be continuously investigated and considered for microbial
modeling (7).

The models also need to be developed to account effects
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of the physiological state and culture history of the test
cells and to simultaneously estimate growth and inactivation
by integrating growth and inactivation data (7,27).

The growth of food pathogens can be significantly
affected by that of spoilage flora in foods and the populations
of both pathogenic and spoilage organisms can reject food
from consumption. Thus, models that can simulate
comparative growths of both organisms are sought (7).

Statistical criteria for determining error or confidence
intervals of predicted parameters need to be agreed on and
applied in the modeling. To conduct this, the nature and
magnitude of variability and uncertainty associated with
predictive models need to be further studied.

Case Study

Background and objective Outbreaks of salmonellosis
associated with the consumption of raw almonds were
reported in 2001/2002 and 2003/2004. Raw almonds are
now known as a vector for salmonellosis (22). There is an
interest in investigating effects of various interventions on
the reduction in the number of cases of salmonellosis,
caused by the consumption of raw almonds. In this case
study, an edible film incorporating an antimicrobial
lactoperoxidase system (LPOS) was assumed to be applied
to reduce the salmonellosis. Thus, the objective of the
study was to use a previously developed QRA using Monte
Carlo simulation to predict the risk associated with
consumption of raw almonds and almonds coated with the
LPOS-antimicrobial edible film. The QRA was conducted
to predict how much the antimicrobial coating reduces
salmonellosis risk and which variables have the greatest
effect on the predicted annual number of cases of the
salmonellosis. This prediction is practical for the HCCP
system for almond processes in determining and validating
any related CCPs and critical limits at the CCPs.

Materials and methods The QRA developed by Danyluk
et al. (22) describing the risk associated with consumption
of raw almonds was used. All the variables used in the
study of Danyluk et al. (22) was used without modification;
level of contamination, handler storage time, pre-process
storage time, pre-process reduction, post-process storage
time, post-process reduction, retail storage time, retail
reduction, consumer storage time, consumer storage
temperature, consumer reduction, Salmonella contamination/
serving (CFU/28 g), probability of illness/serving, U.S.
consumption of raw almonds, Salmonella prevalence (%
positive 100 g samples), Salmonella-positive 100 g
samples consumed, contaminated servings in positive 100
g sample, servings consumed containing Salmonella, and
simulated log reduction. All the values for the variables in
this study were identical to those of Danyluk et al. (22)
except for the value for the simulated log reduction. The
log-reduction of Salmonella (4.0±0.5 log) achieved by the
antimicrobial coating incorporating LPOS (28) was used as
the value for the simulated log reduction variable. Computer
software (@RISK, Palisade) was used to perform Monte
Carlo simulations of 10,000 iterations.

Results Figure 1 illustrates probability distributions of
salmonellosis from consumption of raw almonds and the

antimicrobial-coated almonds. The value ‘0’ on the
horizontal axis on log predicted illness (cases/year) stands
for the probability that one case of salmonellosis occurs per
year. Similarly, the value ‘2’ indicates probability that 100
cases of salmonellosis occur per year. Thus, the sum of
probability values on 0 indicates probability that more than
1 case of salmonellosis occurs annually. The results from
the analysis are summarized in Table 5. The results suggest
that the antimicrobial coating significantly reduces the
probability of salmonellosis (Fig. 1 and Table 5).

A sensitivity analysis was performed to evaluate which
variables have the greatest effect on the predicted annual
number of cases of salmonellosis from consumption of
almonds. The results are demonstrated in Fig. 2. Higher the
absolute value of the correlation coefficient, greater effect
on the predicted illness/year. The results imply that the
primary factors influencing the estimate of number of
salmonellosis cases per year from consumption of raw
almonds were total handler storage time, reduction during
consumer storage, level of contamination, and number of
contaminated servings while those from the consumption
of the antimicrobial-coated almonds include the simulated

Fig. 1. Probability distributions of salmonellosis from
consumption of raw almonds (A) and almonds coated with the
edible film incorporating the lactoperoxidase system (B).

Table 6. Summary of results from Monte Carlo simulations
predicting the risk of salmonellosis from consumption almonds

Almonds
Probability (%)

≥1 case/year ≥10 case/year ≥100 case/year

Raw almonds 78 48 21

Coated almonds1) 0.39 0.08 0.01

1)Almonds coated with the edible film incorporating a lactoperoxi-
dase system.
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log reduction, the log reduction in the number of
Salmonella achieved by applying the antimicrobial coating
to contaminated raw almonds. This indicates that the
antimicrobial coating can effectively reduce Salmonellosis
outbreaks from almond consumption.

In summary, the variables used in this study can be set
with the value of interest in the QRA to investigate the
effect of the variable on the annual number of cases of the
salmonellosis, which will be used to identify CCP as well
as the critical limits at each CCP. The use of this QRA is
anticipated not only for determination of critical limits, but
also their validation. For example, the 4-log reduction was
used as the value for the simulated log reduction variable
in the case study and it was found from the sensitivity
analysis that the simulated log reduction is one of the
primary variables affecting the predicted salmonellosis
cases. The antimicrobial coating process would be considered
as a CCP and the concentration of LPOS, which results in
the 4-log reduction of Salmonella, will be one of the
critical limits in the coating process if the antimicrobial
coating with the 4-log reduction satisfies the degree of
reducing the Salmonellosis outbreaks. If the 4-log
reduction is admitted as a critical value, any antimicrobial
coatings can be validated based on the criteria that the
antimicrobial coating to be applied reduce the number of
Salmonella cells by 4 logs. The QRA has the potential to
be used to manage almonds safety issues as implication of
the HACCP system for almond processes.

Conclusion

The use of mathematical models is becoming a standard
research tool and a valuable aid in evaluating and designing
food processes. The predictions made by microbial modeling
are serviceable for planning and validating HACCP plans.
Model-based quantitative risk assessment, a powerful
combination of food microbiology, modeling, and applied
statistics, can provide useful insights for agencies and
regulators responsible for food inspection, food standards,

and disease surveillance. The use of microbial modeling on
a commercial basis will be fully realized by continuously-
obtaining reliable data and models with the involvement of
the food industry.
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