Browse > Article

Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review  

Min, Sea-Cheol (Division of Food Science, Seoul Women's University)
Choi, Young-Jin (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Food Science and Biotechnology / v.18, no.2, 2009 , pp. 279-293 More about this Journal
Abstract
Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.
Keywords
risk assessment; hazard analysis and critical control points (HACCP); microbial model; probability model; sensitivity analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Frey HC, Patil S. Identification and review of sensitivity analysis methods. Risk Anal. 22: 553-578 (2002)   DOI   ScienceOn
2 Buchanan RL. Predictive food microbiology. Trends Food Sci. Tech. 4: 6-11 (1993)   DOI   ScienceOn
3 Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62:479-490 (1997)
4 Zwietering MH, Rombouts FM, van't Riet K. Comparison of definitions of the lag phase and the exponential phase in bacterial growth. J. Appl. Bacteriol. 72: 139-145 (1992)   DOI
5 Nauta M. Modelling bacterial growth in quantitative microbial risk assessment: Is it possible? Int. J. Food Microbiol. 73: 297-304 (2002)   DOI   ScienceOn
6 Jones JE, Walker SJ. Advances in modelling microbial growth. J. Ind. Microbiol. 12: 200-205 (1993)   DOI
7 Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226 (1983)
8 Zwietering MH, De Wit JC, Notermans S. Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the time of consumption. Int. J. Food Microbiol. 30: 55-70 (1996)   DOI   ScienceOn
9 Adair C, Kilsby DC, Whittall PT. Comparison of the Schoolfield non-linear Arrhenius model and the Square Root model for predicting bacterial growth in foods. Food Microbiol. 6: 7-18 (1989)   DOI
10 Davey KR. Linear-Arrhenius models for bacterial growth and death and vitamin denaturation. J. Ind. Microbiol. 12: 172-179 (1993)   DOI
11 Lindroth S, Benigeorgis C. Probability of growth and toxin production by nonproteolytic Clostridium botulinum in rock fish stored under modified atmospheres. Int. J. Food Microbiol. 3: 167-181 (1986)   DOI   ScienceOn
12 Min S, Min DB. The hazard analysis and critical control point (HACCP) system and its implementation in an aseptic thermal juice processing scheme: A review. Food Sci. Biotechnol. 15: 651-663 (2006)
13 McElroy DM, Jaykus LA, Foegeding PM. Validation and analysis of modeled predictions of growth of Bacillus cereus spores in boiled rice. J. Food Protect. 63: 268-272 (2000)   DOI
14 Schoolfield RM, Sharpe PJH, Magnuson CE. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719-731 (1981)   DOI   ScienceOn
15 Nauta MJ. Separation of uncertainty and variability in quantitative microbial risk assessment. Int. J. Food Microbiol. 57: 9-18 (2000)   DOI   ScienceOn
16 Ross T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501-508 (1996)
17 Davey KR. A predictive model for combined temperature and water activity on microbial growth during the growth phase. J. Appl. Bacteriol. 67: 483-488 (1989)   DOI
18 Galvao LS, Pizarro MA, Epiphanio JCN. Variations in reflectance of tropical soils: Spectral-chemical composition relationships from AVIRIS data. Remote Sens. Environ. 75: 245-255 (2001)   DOI   ScienceOn
19 CAC. Codex Alimentarius Commission. Guidelines for the application of the hazard analysis critical control point (HACCP) system. Food and Agriculture Organization, Rome, Italy (1993)
20 Lambrecht PS, Carriere JF, Collins MT. A model for analyzing growth kinetics of a slowly growing Mycobacterium sp. Appl. Environ. Microb. 54: 910-916 (1988)
21 Cullen AC, Frey HC. Probabilistic Techniques in Exposure Assessment. Plenum Press, New York, NY, USA. p. 352 (1999)
22 Whiting RC. Microbial modeling in foods. Crit. Rev. Food Sci. 35:467-494 (1995)   DOI   ScienceOn
23 Ross T, McMeekin TA. Predictive microbiology. Int. J. Food Microbiol. 23: 241-264 (1994)   DOI   ScienceOn
24 McMeekin TA, Ross T, Olley J. Application of predictive microbiology to assure the quality and safety of fish and fish products. Int. J. Food Microbiol. 15: 13-32 (1992)   DOI   ScienceOn
25 Whiting RC, Call JE. Time of growth for proteolytic Clostridium botulinum. Food Microbiol. 10: 295-301 (1993)   DOI   ScienceOn
26 Gibson AM, Bratchell N, Roberts TA. Predicting microbial growth:Growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride, and storage temperature. Int. J. Food Microbiol. 6: 155-178 (1988)   DOI   ScienceOn
27 Davey KR, Hall RF, Thomas CJ. Experimental and model studies of the combined effect of temperature and pH on the thermal sterilization of vegetative bacteria in liquid. Food Bioprod. Process. 73C: 127-132 (1995)
28 Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models. McGraw-Hill, Chicago, IL, USA. p. 1396 (2004)
29 Linton RH, Carter WH, Pierson MD, Hackney CR, Eifert JD. Use of a Gompertz equation to predict the effects of temperature, pH, NaCl on the inactivation of Listeria monocytogenes Scott A heated in infant formula. J. Food Protect. 59: 16-23 (1996)   DOI
30 Montgomery DC. Design and Analysis of Experiments. Wiley and Sons Ltd., New York, NY, USA. p. 256 (1997)
31 Danyluk MD, Harris LJ, Schaffner DW. Monte Carlo simulations assessing the risk of salmonellosis from consumption of almonds. J. Food Protect. 69: 1594-1599 (2006)   DOI
32 Baranyi J, Ross T, McMeekin TA, Roberts TA. Effects of parameterisation on the performance of empirical models used in 'Predictive Microbiology'. Food Microbiol. 13: 83-91 (1996)   DOI   ScienceOn
33 Cassin MH, Paoli GM, Lammerding AM. Simulation for microbial risk assessment. J. Food Protect. 61: 1560-1566 (1998)   DOI
34 Kaplan S, Garrick BJ. On the quantitative definition of risk. Risk Anal. 1: 11-27 (1981)   DOI   ScienceOn
35 Coleman ME, Marks HM. Qualitative and quantitative risk assessment. Food Control 10: 289-297 (1999)   DOI   ScienceOn
36 Whiting RC, Cygnarowicz-Provost M. A quantitative model for bacterial growth and decline. Food Microbiol. 9: 269-277 (1992)   DOI
37 Zwietering MH, Jongenburger I, Rombouts FM, van 't Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microb. 56:1875-1881 (1990)
38 USDA. Use of microbial pathogen computer modeling in HACCP plans. Available from: http://www.fsis.usda.gov/Regulations_&_Policies/Notice_25-05/index.asp. Accessed Nov. 18, 2008
39 Ross T, McMeekin TA. Modeling microbial growth within food safety risk assessments. Risk Anal. 23: 179-197 (2003)   DOI   ScienceOn
40 Davey KR. Applicability of the Davey linear Arrhenius predictive model to the lag phase of microbial growth. J. Appl. Bacteriol. 70:253-257 (1991)   DOI
41 Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23: 277-294 (1994)   DOI   ScienceOn
42 Van Gerwen SJ, Zwietering MH. Growth and inactivation models to be used in quantitative risk assessments. J. Food Protect. 61: 1541-1549 (1998)   DOI
43 Baranyi J, Roberts TA, McClure PJ. A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10: 43-59 (1993)   DOI   ScienceOn
44 Khuri AJ, Cornell JA. Response Surfaces. Marcel Dekker, Inc., New York, NY, USA. p. 536 (1987)
45 Hoornstra E, Northolt MD, Notermans S, Barendsz AW. The use of quantitative risk assessment in HACCP. Food Control 12: 229-234 (2001)   DOI   ScienceOn
46 Min S, Harris LJ, Krochta JM. Inhibition of Salmonella enterica and Escherichia coli O157:H7 on roasted turkey by edible whey protein coatings incorporating the lactoperoxidase system. J. Food Protect. 69: 784-793 (2006)   DOI
47 Ratkowsky DA. Principles of nonlinear regression modelling. J. Ind. Microbiol. Biot. 12: 195-199 (1993)   DOI
48 Poschet F, Bernaerts K, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Math. Compt. Simulat. 65: 231-243 (2004)   DOI   ScienceOn
49 Kamau DN, Doores S, Pruitt KM. Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lactoperoxidase system. Appl. Environ. Microb. 56: 2711-2716 (1990)
50 Duffy S, Schaffner DW. Modeling the survival of Escherichia coli O157:H7 in apple cider using probability distribution functions for quantitative risk assessment. J. Food Protect. 64: 599-605 (2001)   DOI
51 Ratkowsky DA, Ross T, McMeekin TA, Olley J. Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods. J. Appl. Bacteriol. 71: 452-459 (1991)   DOI
52 Juneja VK, Marmer BS, Phillips JG, Miller AJ. Influence of the intrinsic properties of food on thermal inactivation of spores of nonproteolytic Clostridium botulinum: development of a predictive model. J. Food Safety 15: 349-364 (1995)   DOI
53 Rodriguez AC, Smerage GH. System analysis of the dynamics of bacterial spore populations during lethal heat treatment. Trans. ASAE 39: 595-603 (1996)   DOI