• Title/Summary/Keyword: quantitative analysis

Search Result 9,887, Processing Time 0.044 seconds

Quantitative Analysis of ${\mu}$-CT about Neo-Bone Regeneration on Mouse Calvarial Defected Model (신생 뼈의 재생에 관한 마우스 두개골 결손모델 시 마이크로 시티의 정량적 분석법)

  • Jung, Hong-Moon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • Bone is so crucial anatomy for human body. Many researchers study deep into a subject about bone regeneration. There is no standard analysis for quantitative Neo-bone regeneration on calvarial defected model. Micro CT is so useful method to quantitative analysis of Neo-bone regeneration. This study was show that how to quantitative analysis of Neo-bone regeneration with ${\mu}-CT$ Micro CT was possible to quantitative analysis for Neo-bone regeneration on Calvarial defected model. futhermore Not only was Micro CT possible for qualitative analysis but quantitative analysis on the mouse calvarial model. This study will provide bone biology researchers with accurate quantitative analysis.

  • PDF

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.

Comparison of Quantitative Analysis of Radioactive Corrosion Products Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Choo, Young Sun
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • Radioactive corrosion product specimens were analyzed using an electron probe microanalyzer (EPMA) and X-ray image mapping. It is difficult to analyze the composition of radioactive corrosion products using an EPMA due to the size and rough shape of the surfaces. It is particularly challenging to analyze the composition of radioactive corrosion products in the form of piled up, small grains. However, useful results can be derived by applying a semi-quantitative analysis method using an EPMA with X-ray images. A standard-less, semi-quantitative method for wavelength dispersive spectrometry. EPMA analysis was developed with the objective of simplifying the analytical procedure required. In this study, we verified the reasonable theory of semi-quantitative analysis and observed the semi-quantitative results using a sample with a good surface condition. Based on the validated results, we analyzed highly rough-surface radioactive corrosion products and assessed their composition. Finally, the usefulness of the semi-quantitative analysis was reviewed by verifying the results of the analysis of radioactive corrosion products collected from spent nuclear fuel rods.

Quantitative Analysis of Chloride by Heteronuclear Electronic Reference NMR Method

  • Lee, Sueg-Geun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2007
  • A new quantitative analysis of chloride by the HERETIC NMR method which does not need internal or external references was described. The results showed that the use of HERETIC peak corresponding $500\;{\mu}g/mL$ of chloride calibration showed less than 4 % standard deviations from 50 to $5000\;{\mu}g/mL$ range of chloride concentrations.

  • PDF

Understanding of the Misuse Cases of Quantitative and Qualitative Regression Analysis (정량적, 정성적 회귀분석의 오적용과 이해)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • The research shows misuse cases of quantitative regression analysis used in QC circle activity and six sigma movement which presents guidelines of correct use for quality practitioners. Additionally, the qualitative regression analysis that responses nonconforming ratio of variable y, is reviewed based on misuse cases for proper use by practitioners in the field. In most cases, there are frequent errors that involve the correlation analysis or ANOVA, regardless of using quantitative regression analysis. In addition, qualitative regression analysis for the nonconforming ratio that has dependent variable of discrete and categorical data, is often applied with quantitative regression and result in ineffective quality improvement.

  • PDF

USE OF NEAR INFRARED FOR THE QUANTITATIVE ANALYSES OF BAUXITE

  • Walker, Graham S.;Cirulis, Robyn;Fletcher, Benjimin;Chandrashekar, S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1171-1171
    • /
    • 2001
  • Quantitative analysis is an important requirement in exploration, mining and processing of minerals. There is an increasing need for the use of quantitative mineralogical data to assist with bore hole logging, deposit delineation, grade control, feed to processing plants and monitoring of solid process residues. Quantitative analysis using X-Ray Powder Diffraction (XRD) requires fine grinding and the addition of a reference material, or the application of Rietveld analysis to XRD patterns to provide accurate analysis of the suite of minerals present. Whilst accurate quantitative data can be obtained in this manner, the method is time consuming and limited to the laboratory. Mid infrared when combined with multivariant analysis has also been used for quantitative analysis. However, factors such as the absorption coefficients and refractive index of the minerals requires special sample preparation and dilution in a dispersive medium, such as KBr to minimize distortion of spectral features. In contrast, the lower intensity of the overtones and combinations of the fundamental vibrations in the near infrared allow direct measurement of virtually any solid without special sample preparation or dilution. Thus Near Infrared Spectroscopy (NIR) has found application for quantitative on-line/in line analysis and control in a range of processing applications which include, moisture control in clay and textile processing, fermentation processes, wheat analysis, gasoline analysis and chemicals and polymers. It is developing rapidly in the mineral exploration industry and has been underpinned by the development of portable NIR spectrometers and spectral libraries of a wide range of minerals. For example, iron ores have been identified and characterized in terms of the individual mineral components using field spectrometers. Data acquisition time of NIR field instruments is of the order of seconds and sample preparation is minimal. Consequently these types of spectrometers have great potential for in-line or on-line application in the minerals industry. To demonstrate the applicability of NIR field spectroscopy for quantitative analysis of minerals, a specific example on the quantification of lateritic bauxites will be presented. It has been shown that the application of Partial Least Squares regression analysis (PLS) to the NIR spectra can be used to quantify chemistry and mineralogy in a range of lateritic bauxites. Important, issues such as sampling, precision, repeatability, and replication which influence the results will be discussed.

  • PDF

The Role of NMR in the Field of Quantitative Analysis

  • Lee, Sueg-Geun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • Although NMR technique has been using in many areas of chemistry, its merit on quantitative analysis seems not to acknowledge greatly because of the many inferior intrinsic aspects, particularly its sensitivity. Recently, new NMR techniques, high-field NMR, and demands for cutting edge techniques of analysis, however, seem to change the role of NMR spectroscopy in this field. This review shows the application of NMR development in quantitative analysis and will discuss the basic idea, limitations, and pitfalls. Then it will show you several successful applications applied in quantitative analysis and you will see how useful and accurate method it is.

Comparative Study of Contrast-Enhanced Ultrasound Qualitative and Quantitative Analysis for Identifying Benign and Malignant Breast Tumor Lumps

  • Liu, Jian;Gao, Yun-Hua;Li, Ding-Dong;Gao, Yan-Chun;Hou, Ling-Mi;Xie, Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8149-8153
    • /
    • 2014
  • Background: To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Materials and Methods: Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. Results: The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). Conclusions: The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

Quantitative Analysis and Comparisons between In-Phase Control and Energy-Optimized Control for Series Power Quality Controllers

  • Xinming, Hunag;Jinjun, Liu;Hui, Zhang
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.553-566
    • /
    • 2009
  • In-phase control and energy-optimized control are the two major control strategies proposed for series power quality controllers (SPQC). However quantitative analysis and comparison between these two control strategies is quite limited in previous publications. In this paper, an extensive quantitative analysis is carried out on these two control strategies through phasor diagram approach, and a detailed quantitative comparison is conducted accordingly. The load current is used as the reference phasor, and this leads to a simpler and clearer phasor diagram for the quantitative relationship. Subsequently detailed analysis of SPQC using in-phase control and energy-optimized control are provided respectively, under different modes both for under voltage/voltage sag and for over voltage/voltage swell. The closed form analytic expressions and the curves describing SPQC compensation characteristics are obtained. The detailed system power flow is figured out for each mode, and the detailed quantitative comparison between the two control strategies is then carried out. The comparison covers several aspects of SPQC, such as required compensating voltage magnitude, required capacity of energy storage component, and maximal ride-through time. In the end, computer simulation and prototype experimental results are shown to verify the validity of all the analysis and the result of the comparison.

A Technique for the Quantitative Analysis of the Noise Jamming Effect (잡음재밍 효과에 대한 정량적 분석 기법)

  • Kim, Sung-Jin;Kang, Jong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.91-101
    • /
    • 2005
  • In this paper, a technique for the quantitative analysis of the noise jamming effect is proposed. This technique based upon the mathematical modeling for noise jammers and the probability theory for random processes analyses the jamming effect by means of the modeling of the relationship among jammer, radar variables and radar detection probability under noise jamming environment. Computer simulation results show that the proposed technique not only makes the quantitative analysis of the jamming effect possible, but also provides the basis for quantitative analysis of the electronic warfare environment.