Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.5.231

Comparison of Quantitative Analysis of Radioactive Corrosion Products Using an EPMA and X-ray Image Mapping  

Jung, Yang Hong (Korea Atomic Energy Research Institute)
Choo, Young Sun (Korea Atomic Energy Research Institute)
Publication Information
Corrosion Science and Technology / v.19, no.5, 2020 , pp. 231-238 More about this Journal
Abstract
Radioactive corrosion product specimens were analyzed using an electron probe microanalyzer (EPMA) and X-ray image mapping. It is difficult to analyze the composition of radioactive corrosion products using an EPMA due to the size and rough shape of the surfaces. It is particularly challenging to analyze the composition of radioactive corrosion products in the form of piled up, small grains. However, useful results can be derived by applying a semi-quantitative analysis method using an EPMA with X-ray images. A standard-less, semi-quantitative method for wavelength dispersive spectrometry. EPMA analysis was developed with the objective of simplifying the analytical procedure required. In this study, we verified the reasonable theory of semi-quantitative analysis and observed the semi-quantitative results using a sample with a good surface condition. Based on the validated results, we analyzed highly rough-surface radioactive corrosion products and assessed their composition. Finally, the usefulness of the semi-quantitative analysis was reviewed by verifying the results of the analysis of radioactive corrosion products collected from spent nuclear fuel rods.
Keywords
Semi-quantitative; X-ray image mapping; Shielded EPMA; Radioactive corrosion products;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Bremier, K. Inagaki, L. Capriotti, P. Poeml, T. Ogata, H. Ohta, and V. V. Rondinella, J. Nuc. Mat., 480, 109 (2016). https://doi.org/10.1016/j.jnucmat.2016.07.060   DOI
2 C. Fournier, C. Merlet, O. Dugne, and M. Fialin, J. Anal. At. Spectrom., 14, 381 (1999). https://doi.org/10.1039/A807433J   DOI
3 R. A. Barrea and R. T. Mainardi, X-ray Spectrom., 27, 111 (1998). https://doi.org/10.1002/(SICI)1097-4539(199803/04)27:2<111::AID-XRS259>3.0.CO;2-3   DOI
4 C. Fournier, C. Merlet, M. Fialin, and O. Duhne, J. Anal. At. Spectom., 14, 381 (1999). https://doi.org/10.1039/A807433J   DOI
5 C. Fournier, C. Merlet, P. F. Staub, O. Dugne, Microchim. Acta, 132, 531 (2000). https://doi.org/10.1007/s006040050105   DOI
6 S. J. B. Reed, Microchim. Acta (Suppl.), 15, 29 (1998). https://doi.org/10.1007/978-3-7091-7506-4_4
7 J. Osan, Sz. Torok, K. Torok, L. Nemeth, and J. L. Labar, X-Ray Spectrom., 25, 167 (1996).   DOI
8 W. Jambers and R. Van Grieken, Environ. Sci. Technol.,, 31, 1525 (1997). https://doi.org/10.1021/es9608003   DOI
9 Y. S. Choo, Y. J. Kim, B. O. Yoo, S. J. Baik, Y. G. Jin, K. S. Heo, H. M. Kim and S. B. Ahn, Proc. KNS 2017 Autumn Meeting, Gyeongju, Korea (2017). https://www.kns.org/files/pre_paper/38/17A-569%EC%A3%BC%EC%9A%A9%EC%84%A0.pdf
10 J.-S. Kim, J. -H. Kim, B. -O. Lee, Y. -H. Jung, B. -O. Yoo, Y. -J. Kim, and J. -S. Cheon, Proc. KNS 2018 Autumn Meeting, Yeosu, Korea (2018). https://www.kns.org/files/pre_paper/40/18A-145%EA%B9%80%EC%A3%BC%EC%84%B1.pdf
11 J.-H. Kim, J.-S. Cheon, B.-O. Lee, J.-H. Kim, H.-M. Kim, B.-O. Yoo, Y.-H. Jung, S.-B. Ahn, and C.-B. Lee, Met. Mater. Int., 23, 504 (2017). https://doi.org/10.1007/s12540-017-6515-1   DOI
12 Y. H Jung, S. J, Baik, and S. B, Ahn, Corros. Sci. Tech., 17, 265 (2018). https://doi.org/10.14773/cst.2018.17.6.265   DOI
13 J. C. Deshon, S. T. Yang, Y. H Jung, and J. C. Shin, Zinc Injection Program Assessment of Ulchin-1, pp. 70 - 75, EPRI final report, August (2011).
14 R. E. Walpole and R. H. Myers, probability and statistics for engineers and scientists, 3rd ed., p. 182 - 193, Macmillan, USA (1985).