DOI QR코드

DOI QR Code

Comparison of Quantitative Analysis of Radioactive Corrosion Products Using an EPMA and X-ray Image Mapping

  • Received : 2020.09.16
  • Accepted : 2020.10.12
  • Published : 2020.10.30

Abstract

Radioactive corrosion product specimens were analyzed using an electron probe microanalyzer (EPMA) and X-ray image mapping. It is difficult to analyze the composition of radioactive corrosion products using an EPMA due to the size and rough shape of the surfaces. It is particularly challenging to analyze the composition of radioactive corrosion products in the form of piled up, small grains. However, useful results can be derived by applying a semi-quantitative analysis method using an EPMA with X-ray images. A standard-less, semi-quantitative method for wavelength dispersive spectrometry. EPMA analysis was developed with the objective of simplifying the analytical procedure required. In this study, we verified the reasonable theory of semi-quantitative analysis and observed the semi-quantitative results using a sample with a good surface condition. Based on the validated results, we analyzed highly rough-surface radioactive corrosion products and assessed their composition. Finally, the usefulness of the semi-quantitative analysis was reviewed by verifying the results of the analysis of radioactive corrosion products collected from spent nuclear fuel rods.

Keywords

References

  1. S. Bremier, K. Inagaki, L. Capriotti, P. Poeml, T. Ogata, H. Ohta, and V. V. Rondinella, J. Nuc. Mat., 480, 109 (2016). https://doi.org/10.1016/j.jnucmat.2016.07.060
  2. C. Fournier, C. Merlet, O. Dugne, and M. Fialin, J. Anal. At. Spectrom., 14, 381 (1999). https://doi.org/10.1039/A807433J
  3. R. A. Barrea and R. T. Mainardi, X-ray Spectrom., 27, 111 (1998). https://doi.org/10.1002/(SICI)1097-4539(199803/04)27:2<111::AID-XRS259>3.0.CO;2-3
  4. C. Fournier, C. Merlet, M. Fialin, and O. Duhne, J. Anal. At. Spectom., 14, 381 (1999). https://doi.org/10.1039/A807433J
  5. C. Fournier, C. Merlet, P. F. Staub, O. Dugne, Microchim. Acta, 132, 531 (2000). https://doi.org/10.1007/s006040050105
  6. S. J. B. Reed, Microchim. Acta (Suppl.), 15, 29 (1998). https://doi.org/10.1007/978-3-7091-7506-4_4
  7. J. Osan, Sz. Torok, K. Torok, L. Nemeth, and J. L. Labar, X-Ray Spectrom., 25, 167 (1996). https://doi.org/10.1002/(SICI)1097-4539(199607)25:4<167::AID-XRS156>3.0.CO;2-U
  8. W. Jambers and R. Van Grieken, Environ. Sci. Technol.,, 31, 1525 (1997). https://doi.org/10.1021/es9608003
  9. R. E. Walpole and R. H. Myers, probability and statistics for engineers and scientists, 3rd ed., p. 182 - 193, Macmillan, USA (1985).
  10. Y. S. Choo, Y. J. Kim, B. O. Yoo, S. J. Baik, Y. G. Jin, K. S. Heo, H. M. Kim and S. B. Ahn, Proc. KNS 2017 Autumn Meeting, Gyeongju, Korea (2017). https://www.kns.org/files/pre_paper/38/17A-569%EC%A3%BC%EC%9A%A9%EC%84%A0.pdf
  11. J.-S. Kim, J. -H. Kim, B. -O. Lee, Y. -H. Jung, B. -O. Yoo, Y. -J. Kim, and J. -S. Cheon, Proc. KNS 2018 Autumn Meeting, Yeosu, Korea (2018). https://www.kns.org/files/pre_paper/40/18A-145%EA%B9%80%EC%A3%BC%EC%84%B1.pdf
  12. J.-H. Kim, J.-S. Cheon, B.-O. Lee, J.-H. Kim, H.-M. Kim, B.-O. Yoo, Y.-H. Jung, S.-B. Ahn, and C.-B. Lee, Met. Mater. Int., 23, 504 (2017). https://doi.org/10.1007/s12540-017-6515-1
  13. Y. H Jung, S. J, Baik, and S. B, Ahn, Corros. Sci. Tech., 17, 265 (2018). https://doi.org/10.14773/cst.2018.17.6.265
  14. J. C. Deshon, S. T. Yang, Y. H Jung, and J. C. Shin, Zinc Injection Program Assessment of Ulchin-1, pp. 70 - 75, EPRI final report, August (2011).