• Title/Summary/Keyword: quadrilateral

Search Result 280, Processing Time 0.045 seconds

Thermoviscoelastic Stress Analysis by the Finite Element Method (유한요소법에 의한 열점탄성 응력해석)

  • Sim, Woo-JIn;Park, In-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2148-2158
    • /
    • 1996
  • Uncoupled, quasi-static and linear thermoviscoelastic problems are analyzed in time domain by the finite element approximation which is developed using the principle of virtual work and viscoelasticity matrices instead of shear and bulk relaxation functions as in usual formulations. The material is assumed to be isotropic, homegeneous and thermorheologically simple, which means that the temperature-time equivalence postulate is effective. The stress-strain laws are expressed by relaxation-type hereditary integrals. In spatial and time discritizations, isoparametric quadratic quadrilateral finite elements and linear time variations are adopted. For explicit derivations, the viscoelastic material is assumed to behave standard linear solid in shear and elastically in dilatation. Two-dimensional examples are solved under general temperature distributions T = T(x, t), and compared with other opproximate solutions to show the versatility of the presented analysis.

Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code (상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

Adaptive Analysis Methods for the Accuracy Control of Finite Element Solutions (유한요소해의 정확도 조절을 위한 적응해석법)

  • Oh, H.S;Lee, D.I;Choi, J.H;Lim, J.K
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2067-2077
    • /
    • 1996
  • In adaptive finite element analysis, r- and h-methods are generally used on the basis of a discretization error estimator. In this paper, an rh-method is proposed as a new adaptive method which can improve the adaptivity performance by using both of them. This suggested rh-method moves nodal coordinates of initially given model to adjust element discretization errors and thereafter performes the h-method tdo obtain the specified accuracy of finite element solutions. Numerical experiments for various plane problems were performed using 4-noded isoparametric quadrilateral elements. As a result, the rh-method has been shown to be an accurate and efficient adaptive analysis method to obtain as improved solution.

A Method Using Linear Matrix Algebra for Determination of Engine Motion in Automobile (자동차 엔진의 운동변위 결정을 위한 선형행렬연산법)

  • Ko, B.G.;Lee, W.I.;Park, G.J.;Ha, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A method using the linear matrix algebra is developed in order to determine unknown external forces in linear structural analyses. The method defines a matrix which represents the linearity of the vibrational analysis for a structural system. The unknown external forces are determined by the operations of the matrix. The method is applied to find an engine motion in an automobile system. For a simulation process, an exhaust system is modeled and analyzed by the finite element method. The validity of the simulation is verified by comparing with the experimental results the free vibration. Also, an experiment on the forced vibration is performed to determine the damping ratio of the exhaust sysetm. Estimated model parameters(natural frequency, mode shape) are in accord with the experimental results. Because the method merely repeats the transpose and inverse operations of a matrix, the solution is extremely easy and simple. Moreover, it is more accurate than the existing methods in that there is no artificial assumptions in the calculation processes. Therefore, the method is found to be reliable for the analysis of the exhaust system considering the characteristics of vibrations. Although the suggested method is tested by only the exhaust system here, it can be applied to general structures.

  • PDF

Improvement of the Vibrational Characteristics According to Attachment of Bellows and Evaluation of Bellows Optimal Position in Automobile Exhaust System (벨로우즈의 장착에 따른 자동차 배기계의 동특성 개선 및 벨로우즈의 최적위치 평가)

  • 고병갑;이완익;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.21-32
    • /
    • 1994
  • The Problem of mechanical vibration is investigated for an automotive exhaust system. The vibrational reduction effect is systematically evaluated according to the attachment of the exhaust system. Moreover, the optimal attachment position of bellows is determined from the viewpoint of vibration isolation. The structure is analysed by the finite element technique where the geometry, the mass, the stiffness and the damping properties of the exhaust pipe are modeled. The validity of the developed model is verified by comparing with the experimental results. An optimization is carried out by the quadratic approximation algorithm. The reaction transferred to an automobile body by the hanger is considered ad the objective function. It is shown that the exhaust system which has the bellows at the optimal position is more effective for the vibrational characteristics than the others. It is also proved that this analytical method is quite useful in the design stage of the exhaust system.

  • PDF

A Study on Contextuality in Contemporary Arts (현재 조형예술의 정황성에 관한 연구)

  • Kang, Tai-Sung
    • The Journal of Art Theory & Practice
    • /
    • no.6
    • /
    • pp.7-25
    • /
    • 2008
  • The following thesis has been composed with the inspiration attained from Paul Ardenne's conception on Contextual Art. In Europe and in the United States, there is a group of artists who emphasize in the importance of artist's participation in social, political, economical, environmental and moral issues. Since the 1960's, these artists have pondered on Modernism's ideas where art is contextually separated from humanly issues whereas the manners of such artists put on emphasis in the intent to participate in the real human social and ethical issues. Forerunner in this field of art such as Wolfgang Leib display hybrid or meta style in their work. His work displays a quadrilateral form of pollen which represents the simultaneous blending of two mixed ideas such as the abstract from the real. Thus heterogeneous style and philosophy which includes a range of medias and today's trend is observed in Contextual Art. Such art form is also found in landscapes where it is not seen as an observable object but rather an interactive object. It is correlated to Arte Povera of the Italian Art Movement, Support-Surface of the French Art Movement and lastly to the Fluxus. Through these art movements, we find a mutual antipathy towards putting art for sales in the capitalism market and reflect the social role of art in postmodern era.

  • PDF

The development of mongrel singular element with J-integral and the toughness test for Al 7075-T6 wing spar (J적분을 첨가한 mongrel 특이요소 개발 및 Al 7075-T6 wing spar파괴인성 실험)

  • 강치행
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.154-165
    • /
    • 1998
  • In this paper, the mongrel singular element with 6 node triangle and 8 node quadrilateral element with J-integral are developed and applied to the various plane crack problems for the isotropic material. The convergence nature is excellent for various crack size with even coarse mesh using the direct method. But the results of the mongrel element with J-integral are worse than the former's ones. Fracture tests were conducted on precracked CT specimens. Results show that, for 7075-T6 aluminum wing spar materials, the fracture toughness is 31.06 ksi.inch $\frac{1}{2}$ in the L-T direction.

  • PDF

A Grid Generation Technique for the External Flow Fields Utilizing the Predictor-Corrector Scheme (Predictor-Corrector를 활용한 외부 유동장 격자 생성 기법)

  • Kim B. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.84-92
    • /
    • 1997
  • In this paper a new structured grid generation technique is introduced. This new technique utilizes predictor-corrector approach, and is a marching scheme in the global sense as the hyperbolic scheme is. In the predictor step, one layer of grid cells is obtained by using Modified Advancing Front Method which generates a collection of quadrilateral cells simultaneously. In the corrector step, the layer of grid cells that is calculated in the predictor step is adjusted by solving Laplace equations to prevent grid lines from skewing and overlapping in highly curved configurations. It is shown that the resultant algorithm, named a MAP scheme, which combines the Modified Advancing Front Method as a Predictor with an elliptic scheme as a corrector can be used to generate globally smooth and locally near-orthogonal grids for external flow fields even for highly curved configurations. Examples of grid generations for external flow fields about several configurations by use of the present approach are given, and its applicability and flexibility have been demonstrated and discussed.

  • PDF

Low-velocity impact response of laminated composite plates using a higher order shear deformation theory (고차 전단 변형이론에 의한 복합재료 적층판의 저속 충격응답)

  • Lee, Young-Shin;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1365-1381
    • /
    • 1990
  • A $C^{0}$ continuous displacement finite element method based on a higher-order shear deformation theory is employed in the prediction of the transient response of laminated composite plates subjected to low-velocity impact. A modified contact law was applied to calculate the contact force during impact. The discrete element chosen is a nine-noded quadrilateral with 5 degree-of-freedom per node. The Wilson-.theta. time integration algorithm is used for solving the time dependent equations of the impactor and the central difference method was adopted to perform time integration of the plate. Numerical results, including the contact force history, deflection, and velocity history, are presented. Comparisons of numerical results using a higher order theory and a first-order theory show that using a higher order theory provides more accurate results. Effects of boundary condition, impact velocity, and mass of the impactors are also discussed.d.

Is it shear locking or mesh refinement problem?

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the studier is not preferred going to the solution with increasing mesh size or the computer memory can stack over flow than using higher order plate finite element or using integration techniques is a solution for this problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using Mindlin's theory by using higher order displacement shape function and to determine the effects of various parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates.