• 제목/요약/키워드: quadratic mappings

검색결과 26건 처리시간 0.021초

A FIXED POINT APPROACH TO THE CAUCHY-RASSIAS STABILITY OF GENERAL JENSEN TYPE QUADRATIC-QUADRATIC MAPPINGS

  • Park, Choon-Kil;Gordji, M. Eshaghi;Khodaei, H.
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.987-996
    • /
    • 2010
  • In this paper, we investigate the Cauchy-Rassias stability in Banach spaces and also the Cauchy-Rassias stability using the alternative fixed point for the functional equation: $$f(\frac{sx+ty}{2}+rz)+f(\frac{sx+ty}{2}-rz)+f(\frac{sx-ty}{2}+rz)+f(\frac{sx-ty}{2}-rz)=s^2f(x)+t^2f(y)+4r^2f(z)$$ for any fixed nonzero integers s, t, r with $r\;{\neq}\;{\pm}1$.

QUADRATIC MAPPINGS ASSOCIATED WITH INNER PRODUCT SPACES

  • Lee, Sung Jin
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.77-85
    • /
    • 2011
  • In [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $${\sum_{i=1}^{n}}\left\|x_i-{\frac{1}{n}}{\sum_{j=1}^{n}}x_j \right\|^2={\sum_{i=1}^{n}}{\parallel}x_i{\parallel}^2-n\left\|{\frac{1}{n}}{\sum_{i=1}^{n}}x_i \right\|^2$$ holds for all $x_1$, ${\cdots}$, $x_n{\in}V$. Let V, W be real vector spaces. It is shown that if an even mapping $f:V{\rightarrow}W$ satisfies $$(0.1)\;{\sum_{i=1}^{2n}f}\(x_i-{\frac{1}{2n}}{\sum_{j=1}^{2n}}x_j\)={\sum_{i=1}^{2n}}f(x_i)-2nf\({\frac{1}{2n}}{\sum_{i=1}^{2n}}x_i\)$$ for all $x_1$, ${\cdots}$, $x_{2n}{\in}V$, then the even mapping $f:V{\rightarrow}W$ is quadratic. Furthermore, we prove the generalized Hyers-Ulam stability of the quadratic functional equation (0.1) in Banach spaces.

ON THE STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION

  • Lee, Sang-Baek;Park, Won-Gil;Bae, Jae-Hyeong
    • 충청수학회지
    • /
    • 제19권1호
    • /
    • pp.69-77
    • /
    • 2006
  • The generalized Hyers-Ulam stability problems of the mixed type functional equation $$f\({\sum_{i=1}^{4}xi\)+\sum_{1{\leq}i<j{\leq}4}f(x_i+x_j)=\sum_{i=1}^{4}f(x_i)+\sum_{1{\leq}i<j<k{\leq}4}f(x_i+X_j+x_k)$$ is treated under the approximately even(or odd) condition and the behavior of the quadratic mappings and the additive mappings is investigated.

  • PDF

SOLUTION AND STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • Jun, Kil-Woung;Jung, Il-Sook;Kim, Hark-Mahn
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.815-830
    • /
    • 2009
  • In this paper we establish the general solution of the following functional equation with mixed type of quadratic and additive mappings f(mx+y)+f(mx-y)+2f(x)=f(x+y)+f(x-y)+2f(mx), where $m{\geq}2$ is a positive integer, and then investigate the generalized Hyers-Ulam stability of this equation in quasi-Banach spaces.

  • PDF

ON THE STABILITY OF RADICAL FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES

  • Cho, Yeol Je;Gordji, Madjid Eshaghi;Kim, Seong Sik;Yang, Youngoh
    • 대한수학회보
    • /
    • 제51권5호
    • /
    • pp.1511-1525
    • /
    • 2014
  • In this paper, we prove the generalized Hyers-Ulam stability results controlled by considering approximately mappings satisfying conditions much weaker than Hyers and Rassias conditions for radical quadratic and radical quartic functional equations in quasi-${\beta}$-normed spaces.