• Title/Summary/Keyword: quadratic function equation

Search Result 114, Processing Time 0.022 seconds

MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS IN FUNCTION FIELDS: IV

  • Andrade, Julio;Jung, Hwanyup
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1529-1547
    • /
    • 2021
  • In this series, we investigate the calculation of mean values of derivatives of Dirichlet L-functions in function fields using the analogue of the approximate functional equation and the Riemann Hypothesis for curves over finite fields. The present paper generalizes the results obtained in the first paper. For µ ≥ 1 an integer, we compute the mean value of the µ-th derivative of quadratic Dirichlet L-functions over the rational function field. We obtain the full polynomial in the asymptotic formulae for these mean values where we can see the arithmetic dependence of the lower order terms that appears in the asymptotic expansion.

THE RECURSIVE ALGOFITHM FOR OPTIMAL REGULATOR OF NONSTANCARD SINGULARLY PERTURVED SYSTEMS

  • Mukaidani, Hiroaki;Xu, Hau;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.10-13
    • /
    • 1995
  • This paper considers the linear-quadratic optimal regulator problem for nonstandard singularly perturbed systems making use of the recursive technique. We first derive a generalized Riccati differential equation by the Hamilton-Jacobi equation. In order to obtain the feedback gain, we must solve the generalized algebraic Riccati equation. Using the recursive technique, we show that the solution of the generalized algebraic Riccati equation converges with the rate of convergence of O(.epsilon.). The existence of a bounded solution of error term can be proved by the implicit function theorem. It is enough to show that the corresponding Jacobian matrix is nonsingular at .epsilon. = 0. As a result, the solution of optimal regulator problem for nonstandard singularly perturbed systems can be obtained with an accuracy of O(.epsilon.$^{k}$ ). The proposed technique represents a significant improvement since the existing method for the standard singularly perturbed systems can not be applied to the nonstandard singularly perturbed systems.

  • PDF

THE USE OF MATHEMATICAL PROGRAMMING FOR LINEAR REGRESSION PROBLEMS

  • Park, Sung-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.3 no.1
    • /
    • pp.75-79
    • /
    • 1978
  • The use of three mathematical programming techniques (quadratic programming, integer quadratic programming and linear programming) is discussed to solve some problems in linear regression analysis. When the criterion is the minimization of the sum of squared deviations and the parameters are linearly constrained, the problem may be formulated as quadratic programming problem. For the selection of variables to find "best" regression equation in statistics, the technique of integer quadratic programming is proposed and found to be a very useful tool. When the criterion of fitting a linear regression is the minimization of the sum of absolute deviations from the regression function, the problem may be reduced to a linear programming problem and can be solved reasonably well.ably well.

  • PDF

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium

  • Kakar, Rajneesh
    • Interaction and multiscale mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-300
    • /
    • 2013
  • In this paper, the effect of impulsive line on the propagation of shear waves in non-homogeneous elastic layer is investigated. The rigidity and density in the intermediate layer is assumed to vary quadratic as functions of depth. The dispersion equation is obtained by using the Fourier transform and Green's function technique. The study ends with the mathematical calculations for transmitted wave in the layer. These equations are in complete agreement with the classical results when the non-homogeneity parameters are neglected. Various curves are plotted to show the effects of non-homogeneities on shear waves in the intermediate layer.

MONOTONE ITERATION SCHEME FOR IMPULSIVE THREE-POINT NONLINEAR BOUNDARY VALUE PROBLEMS WITH QUADRATIC CONVERGENCE

  • Ahmad, Bashir;Alsaedi, Ahmed;Garout, Doa'a
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1275-1295
    • /
    • 2008
  • In this paper, we consider an impulsive nonlinear second order ordinary differential equation with nonlinear three-point boundary conditions and develop a monotone iteration scheme by relaxing the convexity assumption on the function involved in the differential equation and the concavity assumption on nonlinearities in the boundary conditions. In fact, we obtain monotone sequences of iterates (approximate solutions) converging quadratically to the unique solution of the impulsive three-point boundary value problem.

STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

  • Najati, Abbas;Moradlou, Fridoun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.587-600
    • /
    • 2008
  • In this paper we establish the general solution and investigate the Hyers-Ulam-Rassias stability of the following functional equation in quasi-Banach spaces. $${\sum\limits_{{{1{\leq}i<j{\leq}4}\limits_{1{\leq}k<l{\leq}4}}\limits_{k,l{\in}I_{ij}}}\;f(x_i+x_j-x_k-x_l)=2\;\sum\limits_{1{\leq}i<j{\leq}4}}\;f(x_i-x_j)$$ where $I_{ij}$={1, 2, 3, 4}\backslash${i, j} for all $1{\leq}i<j{\leq}4$. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

The Characterization of Optimal Control Using Delay Differential Operator

  • Shim, Jaedong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.123-139
    • /
    • 1994
  • In this paper we are concerned with optimal control problems whose costs are quadratic and whose states are governed by linear delay differential equations and general boundary conditions. The basic new idea of this paper is to introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.

  • PDF