• Title/Summary/Keyword: q-series identities

Search Result 18, Processing Time 0.024 seconds

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1379-1391
    • /
    • 2008
  • Let k be an imaginary quadratic field, ${\eta}$ the complex upper half plane, and let ${\tau}{\in}{\eta}{\cap}k,\;q=e^{{\pi}{i}{\tau}}$. For n, t ${\in}{\mathbb{Z}}^+$ with $1{\leq}t{\leq}n-1$, set n=${\delta}{\cdot}2^{\iota}$(${\delta}$=2, 3, 5, 7, 9, 13, 15) with ${\iota}{\geq}0$ integer. Then we show that $q{\frac}{n}{12}-{\frac}{t}{2}+{\frac}{t^2}{2n}{\prod}_{m=1}^{\infty}(1-q^{nm-t})(1-q^{{nm}-(n-t)})$ are algebraic numbers.

CERTAIN IDENTITIES ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS

  • Lee, Keum-Sik;Cho, Young-Joon;Choi, June-Sang
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2001
  • The main object of this paper is to present a transformation formula for a finite series involving $_3F_2$ and some identities associated with the binomial coefficients by making use of the theory of Legendre polynomials $P_{n}$(x) and some summation theorems for hypergeometric functions $_pF_q$. Some integral formulas are also considered.

  • PDF

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES

  • Kim, Dae-Yeoul;Kim, Min-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.693-704
    • /
    • 2012
  • We consider Weierstrass functions and divisor functions arising from $q$-series. Using these we can obtain new identities for divisor functions. Farkas [3] provided a relation between the sums of divisors satisfying congruence conditions and the sums of numbers of divisors satisfying congruence conditions. In the proof he took logarithmic derivative to theta functions and used the heat equation. In this note, however, we obtain a similar result by differentiating further. For any $n{\geq}1$, we have $$k{\cdot}{\tau}_{2;k,l}(n)=2n{\cdot}E_{\frac{k-l}{2}}(n;k)+l{\cdot}{\tau}_{1;k,l}(n)+2k{\cdot}{\sum_{j=1}^{n-1}}E_{\frac{k-1}{2}(j;k){\tau}_{1;k,l}(n-j)$$. Finally, we shall give a table for $E_1(N;3)$, ${\sigma}(N)$, ${\tau}_{1;3,1}(N)$ and ${\tau}_{2;3,1}(N)$ ($1{\leq}N{\leq}50$) and state simulation results for them.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG;WANG, XIAOXIA;RATHIE, ARJUN K.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.439-447
    • /
    • 2015
  • Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.

A SUMMATION FORMULA FOR THE SERIES 3F2 DUE TO FOX AND ITS GENERALIZATIONS

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fox [2] presented an interesting identity for $_pF_q$ which is expressed in terms of a finite summation of $_pF_q$'s whose involved numerator and denominator parameters are different from those in the starting one. Moreover Fox [2] found a very interesting and general summation formula for $_3F_2(1/2)$ as a special case of his above-mentioned general identity with the help of Kummer's second summation theorem for $_2F_1(1/2)$. Here, in this paper, we show how two general summation formulas for $$_3F_2\[\array{\hspace{110}{\alpha},{\beta},{\gamma};\\{\alpha}-m,\;\frac{1}{2}({\beta}+{\gamma}+i+1);}\;{\frac{1}{2}}\]$$, m being a nonnegative integer and i any integer, can be easily established by suitably specializing the above-mentioned Fox's general identity with, here, the aid of generalizations of Kummer's second summation theorem for $_2F_1(1/2)$ obtained recently by Rakha and Rathie [7]. Several known results are also seen to be certain special cases of our main identities.

Infinite Families of Congruences for Partition Functions ${\bar{\mathfrak{EO}}}$(n) and ${\mathfrak{EO}}_e$(n)

  • Riyajur Rahman;Nipen Saikia
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.155-166
    • /
    • 2023
  • In 2018, Andrews introduced the partition functions ${\mathfrak{EO}}$(n) and ${\bar{\mathfrak{EO}}}$(n). The first of these denotes the number of partitions of n in which every even part is less than each odd part, and the second counts the number of partitions enumerated by the first in which only the largest even part appears an odd number of times. In 2021, Pore and Fathima introduced a new partition function ${\mathfrak{EO}}_e$(n) which counts the number of partitions of n which are enumerated by ${\bar{\mathfrak{EO}}}$(n) together with the partitions enumerated by ${\bar{\mathfrak{EO}}}$(n) where all parts are odd and the number of parts is even. They also proved some particular congruences for ${\bar{\mathfrak{EO}}}$(n) and ${\mathfrak{EO}}_e$(n). In this paper, we establish infinitely many families of congruences modulo 2, 4, 5 and 8 for ${\bar{\mathfrak{EO}}}$(n) and modulo 4 for ${\mathfrak{EO}}_e$(n). For example, if p ≥ 5 is a prime with Legendre symbol $({\frac{-3}{p}})=-1$, then for all integers n ≥ 0 and α ≥ 0, we have ${\bar{\mathfrak{EO}}}(8{\cdot}p^{2{\alpha}+1}(pn+j)+{\frac{19{\cdot}p^{2{\alpha}+2}-1}{3}}){\equiv}0$ (mod 8); 1 ≤ j ≤ (p - 1).