• Title/Summary/Keyword: pyrolysis oil fraction

Search Result 20, Processing Time 0.024 seconds

Characteristics of Bio-oil derived from Quercus Acutissima in a Fluidized Bed Pyrolyser (유동층 열분해로에 의하여 생산된 상수리나무 바이오오일의 특성)

  • Lee Sun-Hoon;Eom Min-Seop;Yoo Kyung-Seun;Lee Young-Soo;Kim Nam-Chan;Lee See-Hoon;Lee Jae-Goo;Kim Jae-Ho
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.3-11
    • /
    • 2006
  • Fast pyrolysis of Quercus acutissima was carried out in a fluidized bed pyrolyser and then the physicochemical properities of obtained bio-oil were analyzed using GC/MS. The yields of bio-oil of Quercus acutissima and Larix leptolepis from a fluidized bed pyrolyzer were maximized at $350^{\circ}C\;and\;400^{\circ}C$, respectively. This is due to the difference or cellulose content between the two tree species. Above the optimum temperature, the yields of char and oil decreased as the reaction temperature increased, but the yield of gas-phase and water fraction increased. It is concluded that this phenomenon is occured by secondary pyrolysis in the free board. The feeding rate of the sample in a fluidized bed pyrolyser did not affect the yields and composition of products, because of a sufficient mixing between bed materials and sand.

Quality Improvement of Pyrolysis Oil Fraction of Waste Plastic by Dimethylformamide Extraction (디메틸포름아마이드 추출에 의한 폐플라스틱 열분해유 유분의 품질향상)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.155-159
    • /
    • 2019
  • As a part of improving the quality for the fraction of the waste plastics pyrolysis oil (WPPO), the recovery of paraffin components contained in the fraction was investigated by dimethylformamide (DMF) equilibrium extraction. The fraction of a distilling temperature of $120{\sim}350^{\circ}C$ recovered from WPPO by the simple distillation and the aqueous solution of DMF were used as a raw material and solvent, respectively. The concentrations of paraffin components ($C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$) contained in the raffinate decreased by increasing the mass fraction of water in the solvent at an initial state ($y_{w,0}$), whereas, the concentrations of paraffin components contained in the raffinate increased by increasing the mass ratio of the solvent to the feed at an initial state $(S/F)_0$. The concentrations of $C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$ paraffin components present in the raffinate recovered at $(S/F)_0=10$ were about 1.37, 2.0, 2.46 and 3.16 times higher than those of the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly increased with increasing $y_{w,0}$, and decreasing $(S/F)_0$. The raffinate recovered through this study was expected to be used as a renewable energy.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction (회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수)

  • Kang, Ho-Cheol;Shin, Sung Soon;Kim, Doo Han;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.630-634
    • /
    • 2018
  • The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of $120-350^{\circ}C$ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of $C_{12}$, $C_{14}$, $C16$ and $C_{18}$ paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components ($C_7-C_{24}$) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.

Upgrading of Quercus mongollica bio-oil by esterification (에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선)

  • Chea, Kwang-Seok;Lee, Hyung-Won;Jeong, Han-Seob;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • Fast pyrolysis bio-oil has unfavorable properties that restrict its use in many applications. Among the main issues are high acidity, instability, and water and oxygen content, which give rise to corrosiveness, polymerization during storage, and a low heating value. Esterification and azeotropic water removal can improve all of these properties. A 500 g of Quercus mongollica which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 2 seconds at $550^{\circ}C$. The esterification consists of treating pyrolysis oil with a high boiling alcohol like n-butanol at $70^{\circ}C$ under reduced pressure (100 hPa). All products are analyzed for water mass fraction, viscosity, higher heating value, pH, FT-IR and GC/MS. The water mass fraction can be reduced by 91.4 % (from 31.5 % to below 2.7 %), the viscosity by 65.8 % (from 36.5 to 12.5 cP) and the higher heating value can be increased by 96.8 % (from 3,918 to 7,712 kcal/kg), the pH by 1.3 (from 2.7 to 4.0). FT-IR and GC/MS analysis indicated that labile acids, aldehydes, ketones and lower alcohols were transformed to stable target products. Using this approach, the water content of the pyrolysis oil is reduced significantly. These improvements should allow the utilization of upgraded pyrolysis liquids in standard boilers and as fuel in CHP (Combined heat and power) plants.

Development of Innovation DME Process from Natural Gas and Biomass in KOREA (천연가스와 바이오매스로부터 개선된 DME 공정의 개발)

  • Cho, Wonjun;Song, Taekyong;Baek, Youngsoon;Kim, Seung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.107-107
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas have played an important role of synthesizing the valuable chemical compound, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuels and chemical production. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C/min$ in thermogravimetric analysis. Bubbling fluidized bed reactor were use to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, CO2, H2 and a small fraction of C1-C4 hydrocarbons.

  • PDF

Synthesis Gas Production from Gasification of Woody Biomass (목질계 바이오매스로부터 가스화에 의한 합성가스 제조 연구)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Baek, Young-Soon;Kim, Seung-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas has played an important role of synthesizing the valuable chemical compounds, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuel and chemicals. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C$/min in thermogravimetric analysis. Bubbling fluidized bed reactor was used to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, $CO_2$, $H_2$ and a small fraction of $C_1-C_4$ hydrocarbons.

Catalytic decomposition of HDPE over Al-MCM-48 using TGA and Py-GC/FID (TGA와 Py-GC/FID를 이용한 Al-MCM-48상에서 HDPE의 촉매(觸媒) 열분해(熱分解))

  • Kim, Young-Min;Kim, Seung-Do;Park, Young-Kwon;Kim, Ji-Man;Jeon, Jong-Ki
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.17-25
    • /
    • 2006
  • Al-MCM-48 was used as a catalyst to decompose high density polyethylene(HDPE). Catalytic activity of Al-MCM-48 was compared with those of Al-MCM-41, Beta, and ZSM-5. Catalytic decomposition rate over Al-MCM-48 was much higher than at of non-catalytic pyrolysis only. Compared to other catalysts, Al-MCM-48 revealed the little higher activation energy value. The progressive deactivation behavior of the catalysts has also studied. ZSM-5 and Al-MCM-48 showed slower deactivation rates than Al-MCM-41 and Beta. Pyrolysis coupled with gas chromatographic separation and flame ionization detection (Py-GC/ FID) was also performed to assess the characteristics of pyrolysis products. ZSM-5 gave a higher fraction of gaseous products ($C_1-C_4$). Al-MCM-41 and Beta produced mainly $C_5-C_{12}$ products. The selectivity to oil product ($C_5-C_{22}$) obtained with Al- MCM-48 is higher an that with the other catalysts employed in this study.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

A Study on Pyrolysis of Styrene Dimer Fraction (SDF) (스티렌 이량체 유분의 열분해 연구)

  • Pei, Hai-Song;Kang, Yong;Cho, Deug-Hee;Choi, Myong-Jae;Lee, Sang-Bong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.321-326
    • /
    • 2006
  • Thermal degradation of styrene dimer fraction (SDF, main compound: 47 wt% of 1,3-diphenylpropane), 5~15% of total products produced during decomposition of waste expanded polystyrene (WEPS) was investigated. Reaction condition of $360^{\circ}C$, and 152 kPa to 202 kPa was an optimum for high pressure degradation. Under this operating condition, the yield of oil was 73.8% and the selectivities to Ben, Tol, EB, SM, and AMS were 0.4, 30.9, 15.0, 19.6, and 4.2%, respectively. Non-catalytic fixed bed continuous degradation was conducted at reaction temperatures of $510{\sim}610^{\circ}C$ and contact time ranges of 2~24 min, where the yield was increased by increasing of reaction temperature and contact time. A $Cr_2O_3$ catalyst showed the highest activity and SM yield among acid, base, and redox catalysts. The conversion of 74.6% and the yield of Ben, Tol, EB, SM, and AMS were 0.4, 21.6, 9.7, 17.9, and 3.5%, respectively at $560^{\circ}C$ and contact time of 24 min. It is thought that styrene is converted to EB and other secondary products throughout the formation of diradicals of styrene.