Characteristics of Bio-oil derived from Quercus Acutissima in a Fluidized Bed Pyrolyser

유동층 열분해로에 의하여 생산된 상수리나무 바이오오일의 특성

  • Lee Sun-Hoon (Dept. of Environmental Eng., Kwangwoon University) ;
  • Eom Min-Seop (Dept. of Environmental Eng., Kwangwoon University) ;
  • Yoo Kyung-Seun (Dept. of Environmental Eng., Kwangwoon University) ;
  • Lee Young-Soo (Dept. of Environmental Eng., Kwangwoon University) ;
  • Kim Nam-Chan (Dept. of Environmental Eng., Kwangwoon University) ;
  • Lee See-Hoon (Korea Institute of Energy Research) ;
  • Lee Jae-Goo (Korea Institute of Energy Research) ;
  • Kim Jae-Ho (Korea Institute of Energy Research)
  • Published : 2006.02.01

Abstract

Fast pyrolysis of Quercus acutissima was carried out in a fluidized bed pyrolyser and then the physicochemical properities of obtained bio-oil were analyzed using GC/MS. The yields of bio-oil of Quercus acutissima and Larix leptolepis from a fluidized bed pyrolyzer were maximized at $350^{\circ}C\;and\;400^{\circ}C$, respectively. This is due to the difference or cellulose content between the two tree species. Above the optimum temperature, the yields of char and oil decreased as the reaction temperature increased, but the yield of gas-phase and water fraction increased. It is concluded that this phenomenon is occured by secondary pyrolysis in the free board. The feeding rate of the sample in a fluidized bed pyrolyser did not affect the yields and composition of products, because of a sufficient mixing between bed materials and sand.

유동층 열분해로에서 상수리나무의 급속열분해를 수행하고 생성된 바이오오일의 물리화학적 특성을 GC/MS를 이용하여 분석하였다. 유동층 열분해로에서 얻어진 상수리나무와 낙엽송의 바이오오일 수율은 각각 $350^{\circ}C,\;400^{\circ}C$에서 최대치를 보였으며 이는 두 수종간의 셀룰로오스 함량차이에 기인하는 것으로 추정된다. 최적온도 이상에서는 반응온도가 증가할수록 프리보드에서의 2차 열분해에 의하여 촤와 오일의 수율이 감소하였고 가스상 성분과 수분의 함량이 증가하였다. 유등층 열분해로에서 시료의 투입량은 생성물의 수율과 조성에는 큰 영향을 주지 않았으며 이는 충분한 혼합이 이루어지기 때문으로 판단되었다.

Keywords

References

  1. 산림청, 2004: 임업통계연보 34호
  2. Ayhan Dernirbas, 2004: Effect of initial moisture content on the yields of oily products from pyrolysis of biomass, J.Anal.Appl.Pyrolysis, 71, pp.803-815 https://doi.org/10.1016/j.jaap.2003.10.008
  3. H.N.Murwanashyaka, H.Pakdel and C.Roy, 2001: Separation of syringol from birch wood-derived vacuum pyrolysis oil, Separation and Purification Tech., 24, pp.155-165 https://doi.org/10.1016/S1383-5866(00)00225-2
  4. S.H.Lee et al., 2005 : Separation and characterization of value added chemicals from tar residue during wood carbonization process, ACS, 229th ACS National Meeting, San Diego-USA, March 13-17 2005, Printed in USA
  5. M.D.Guillen and M.L.Ibargoitia, 1998: New components with potential anoxidant and organoleptic properties, detected for the first time in liquid smoke flavouring preparations, J.Agric.Food Chem., 46(4), pp.1276-1285 https://doi.org/10.1021/jf970952x
  6. A.Bridgwater et al., 2003: Properties of fast pyrolysis liquids: status of test methods, Fast pyrolysis ofbiornass: a handbook, pp.75-91, CPL Press, Newbury, UK
  7. C. Branca, P.Giudicianni and C. Di Blasi, 2003: Chemical Composition and Reactivity of Oils Derivedfrom Wood Fast Pyrolysis, ICheap-6, Pisa-Italy, 8 June 2003, Printed in Italy
  8. 문창국, 1982: 지리산산 굴참나무재와 졸참나무재의 화학적조성 , 한국임학회지 , 58, pp.23-26'
  9. J.Piskorz et al., 1998 : Fast pyrolysis of sweet sorghum and sweet sorghum bagasse, J. Anal. Appl. Pyrolysis, 46, pp.15-29 https://doi.org/10.1016/S0165-2370(98)00067-9
  10. Z.Luo et al., 2004 : Research on biomassfast pyrolysis for liquid fuel, Biomass and Bioenergy, 26, pp,455-462 https://doi.org/10.1016/j.biombioe.2003.04.001
  11. I. Hasegawa et al., 2005 : Quantitative Prediction of Yield and Elemental Composition during Pyrolysis of Wood Biomass, 日本エネルギー學會誌 , 84(1), pp,46-52
  12. P. A. Horne and P.T.Williams, 1996: Influence of temperature on the products from the flash pyrolysis of biomass, Fuel, 75(9), pp.1051-1059 https://doi.org/10.1016/0016-2361(96)00081-6