Browse > Article

A Study on Pyrolysis of Styrene Dimer Fraction (SDF)  

Pei, Hai-Song (Department of Chemical Engineering, Chungnum National University)
Kang, Yong (Department of Chemical Engineering, Chungnum National University)
Cho, Deug-Hee (Environment & Resources Technology Research Team, KRICT)
Choi, Myong-Jae (Environment & Resources Technology Research Team, KRICT)
Lee, Sang-Bong (Environment & Resources Technology Research Team, KRICT)
Publication Information
Applied Chemistry for Engineering / v.17, no.3, 2006 , pp. 321-326 More about this Journal
Abstract
Thermal degradation of styrene dimer fraction (SDF, main compound: 47 wt% of 1,3-diphenylpropane), 5~15% of total products produced during decomposition of waste expanded polystyrene (WEPS) was investigated. Reaction condition of $360^{\circ}C$, and 152 kPa to 202 kPa was an optimum for high pressure degradation. Under this operating condition, the yield of oil was 73.8% and the selectivities to Ben, Tol, EB, SM, and AMS were 0.4, 30.9, 15.0, 19.6, and 4.2%, respectively. Non-catalytic fixed bed continuous degradation was conducted at reaction temperatures of $510{\sim}610^{\circ}C$ and contact time ranges of 2~24 min, where the yield was increased by increasing of reaction temperature and contact time. A $Cr_2O_3$ catalyst showed the highest activity and SM yield among acid, base, and redox catalysts. The conversion of 74.6% and the yield of Ben, Tol, EB, SM, and AMS were 0.4, 21.6, 9.7, 17.9, and 3.5%, respectively at $560^{\circ}C$ and contact time of 24 min. It is thought that styrene is converted to EB and other secondary products throughout the formation of diradicals of styrene.
Keywords
expandable polystyrene; styrene monomer; thermal decomposition; styrene dimer fraction; catalysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. S. Woo, T. M. Kruse, and L. J. Broadbelt, Poly. Degr. Stab., 70, 155 (2000)   DOI   ScienceOn
2 K. Huang, L. H. Tang, Z. B. Zhu, and C. F. Zhang, Poly. Degr. Stab., 89, 312 (2005)   DOI   ScienceOn
3 J. S. Kim, W. Y. Lee, S. B. Lee, S. B. Kim, and M. J. Choi, Catalysis Today, 87, 59 (2003)   DOI
4 A. Marcilla, J. C. Garica-Quesada, S. Sánchez, and R. Ruiz, J. Anal. Appl. Pyrolysis, 74, 387 (2005)   DOI   ScienceOn
5 R. H. Still and O. A. Peters, J. Appl. Polym. Sci., 50, 989 (1993)   DOI   ScienceOn
6 J. S. Kim, S. J. Kim, J. S. Yun, Y. Kang, and M. J. Choi, Hwahak Konghak, 39, 465 (2001)
7 T. Blaskar, J. Koneko, A. Muto, Y. Sataka, E. Jakab, T. matsui, and M. A. Uddin, J. Anal. Appl. Pyrolysis, 72, 27 (2004)   DOI   ScienceOn
8 Y. Sakata, Md. Azhar Uddin, and A. Muto, J. Anal. Appl. Pyrolysis, 51, 135 (1999)   DOI   ScienceOn
9 Y. Liu, J. Qian, and J. Wang, Fuel Proc. Tech., 63, 45 (2000)   DOI   ScienceOn
10 J. S. Kim, W. Y. Lee, M. J. Choi, and Y. Kang, Theories and Applications of Chem. Eng., 6, 4337 (2000)
11 H. Nanbu, Y. Sakuma, Y. Ishihara, T. Takesue, and T. Ikemura, Poly. Degr. Stab., 19, 61 (1987)   DOI   ScienceOn
12 V. R. Chumbhale, J. S. Kim, S. B. Lee, and M. J. Choi, J. Molecular catalysis A: Chemical, 222, 133 (2004)   DOI
13 T. M. Kruse, S. E. Levine, H. W. Wong, E. Duoss, A. H. Lebovitz, J. M. Torkelson, and L. J. Broadbelt, J. Anal. Appl. Pyrolysis, 73, 342 (2005)   DOI   ScienceOn
14 T. M. Krus, O. S. Woo, and L. J. Broadbelt, Chem. Eng. Soi., 56, 971 (2001)   DOI   ScienceOn
15 O. S. Woo, N. Ayala, and L. J. Broadbelt, Catalysis Today, 55, 161 (2000)   DOI   ScienceOn
16 O. S. Woo and L. J. broadbelt, Catalysis Today, 40, 121 (1998)   DOI   ScienceOn
17 H. Ukei, T. Hirose, S. Horikawa, Y. Takai, M. Taka, N. Azuma, and A. Ueno, Catalysis Today, 62, 67 (2000)   DOI   ScienceOn
18 R. W. J. Westerhout, J. Waanders, J. A. M. Kuipers, and W. P. Swaaij, I & EC Research, 36, 1995 (1997)
19 S. Y. Lee, J. H. Yoon, and D. W. Park, J. Ind. Eng. Chem., 8, 143 (2002)
20 Z. Zhang, T. Hirose, S. Nishio, Y. Morioka, N. Azuma, A. Ueno, H. Ohkita, and M. Okada, I & EC Research, 34, 4514 (1995)
21 D. W. Shun, Y. S. Chim, S. H. Cho, and J. E. Son, J. Korean Solid Wastes Eng. Society, 10, 195 (1993)