• Title/Summary/Keyword: push-out tests

Search Result 140, Processing Time 0.023 seconds

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Experimental Study on the Shear Capacity of Continuous Cap-Type Shear Connector (연속 캡 형상 전단연결재의 전단 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Jeong, Sug Chang;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.91-99
    • /
    • 2019
  • The push-out tests have been conducted on the specimens which consist of the steel beam with U-shape section and the continuous cap-type shear connector. Existing formulas for the elevation of shear connector capacity were investigated on the basis of test results. The shear capacities of continuous cap-type shear connectors distinctly declined as the diameters of side-hole in the shear connector increased. The rebars through side-hole for the transverse reinforcement improved the shear capacity of continuous cap-type connector by 20 to 30 percent. It was not feasible to obtain the appropriate capacity values of continuous cap-type shear connectors made of thin steel plate like those of in this study, using the existing formulas. The new formula for reflecting the shear strength of penetrative bars was proposed based on the shear equation of Eurocode 4. The slip capacities of continuous cap-type shear connectors were shown to exceed the limit value of 6mm for the sufficiently ductile behavior.

Research on shear distribution of perfobond connector groups with rubber rings

  • Liu, Yangqing;Xin, Haohui;Liu, Yuqing
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.399-414
    • /
    • 2021
  • This paper aims to verify the feasibility of rubber rings to mitigate the shear concentration in perfobond connector (PBL) groups. Firstly, modified push-out tests for five specimens with four holes were conducted to investigate the effects of rubber rings on the shear mechanism of PBL groups. The test results showed that by employing rubber rings on partial holes, more shear forces were distributed to the holes without rubber rings. The rubber rings significantly improved the slip ability of the specimens, and the ductility of PBL groups is dependent on the number and thickness of rubber rings. Subsequently, three-dimensional numerical models were established and validated by the experimental results. According to the plastic strain distribution in concrete dowels, the action principle of rubber rings in PBL groups was explained. Furthermore, the parametric study was conducted to investigate the influential factors on shear distributions, including the width of steel plates, the hole spacing, the number of holes, the rubber ring thickness, and the positions of rubber rings. The parametric analysis results showed that the redistribution of shear forces is significantly affected by the rubber rings with the smallest thickness. By properly employing rubber rings in PBL groups, the shear forces of holes are more even. Finally, an analytical model for PBL groups with rubber rings was proposed to predict the shear distribution at the serviceability stage.

Experimental investigation of natural bond behavior in circular CFTs

  • Naghipour, Morteza;Khalili, Aidin;Hasani, Seyed Mohammad Reza;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.191-207
    • /
    • 2022
  • Undoubtedly, the employment of direct bond interaction between steel and concrete is preceding the other mechanisms because of its ease of construction. However, the large scatter in the experimental data about the issue has hindered the efforts to characterize bond strength. In the following research, the direct bond interaction and bond-slip behavior of CFTs with circular cross-section were examined through repeated load-reversed push-out tests until four cycles of loading. The influence of different parameters including the diameter of the tube and the use of shear tabs were assessed. Moreover, the utilization of expansive concrete and external spirals was proposed and tested as ways of improving bond strength. According to the results section dimensions, tube slenderness, shrinkage potential of concrete, interface roughness and confinement are key factors in a natural bond. Larger diameters will lead to a considerable drop in bond strength. The use of shear tabs by their associated bending moments increases the bond stress up to eight times. Furthermore, employment of external spirals and expansive concrete have a sensible effect on enhancing bonds. Macro-locking was also found to be the main component in achieving bond strength.

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

An Experimental Study on the Behavior of the Perforated Rib Connector with Shearing Bars (전단구속철근을 배치한 유공강판 전단연결재에 관한 실험적 연구)

  • Kim, Sung-Chil;Kim, Young-Ho;Yu, Sung-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.175-182
    • /
    • 2006
  • In the design of composite structures, shear connectors such as headed stud, channel, perforated plate, etc, are commonly used to transfer longitudinal shear forces across the steel-concrete interface. Many researches have been conducted to improve the characteristics of different types of shear connector. This paper presents the results of 11 push-out tests performed on the new perforated rib connectors with shearing bars embedded in concrete slab under static loads. The results obtained from these tests are as following : 1) The bearing plate welded on both sides of perforated rib plate improves the stiffness and strength. 2) The capacity of perforated connectors is influenced primarily by the transverse reinforcements and shearing bars.

Static Test and Suggestion of Shear Strength Equation on Shear Studs in Composite Bridge (합성형 교량에서 전단연결재에 대한 정적실험 및 강도식의 제안)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, to investigate the shear connection material for the composite of steel plate and bottom plate, design standards and research cases for shear connectors in various countries around the world were analyzed and shear tests were performed on the Push-out specimens with a shear connection, which transmits the horizontal shear force developed on the contact surface between the steel plate and the concrete slab due to various vertical loads acting on the bridge deck. Through Push-out tests of shear studs, of which FRP bar instead reinforcement is placed, the shear stud evaluation formula of the steel strap bottom plate was suggested. The suggested equation suggested in this study has the safety factor of approximately three times compared to allowable strength of highway bridge design criteria. In addition, compared to existing DIN standards and Viest assessment equation, the results showed similar values(approximately, 5% error).

Static Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 정적거동)

  • Lee, Pil Goo;Shim, Chang Su;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.611-620
    • /
    • 2003
  • Shear studs with a diameter of 19mm or 22mm are typically used in steel-concrete composite bridge. For the simplification of details in steel bridges, the convenience of removing concrete slab, and the efficient distribution of shear pockets for precast decks, large studs can be an excellent alternative. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, static behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range and trilinear load-slip curves were proposed after shear tests on 25mm, 27mm, and 30mm studs. The ultimate slip capacity and ultimate strength of large studs were also evaluated, with the test results revealing conservative values for the design shear strength in Eurocode-4. For 30mm stud shear connectors, the welding quality and bearing capacity of concrete slab should be improved.

Effect of silicone rubber-sleeve mounted on shear studs on shear stiffness of steel-concrete composite structures

  • Yang, Chang;Yang, Decan;Huang, Caiping;Huang, Zhixiang;Ouyang, Lizhi;Onyebueke, Landon;Li, Lin
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.741-752
    • /
    • 2022
  • Earlier works have shown that excessive shear stiffness at the steel-concrete interface causes a non-uniform distribution of shear force in composite structures. When the shear studs are wrapped at the fixed end with flexible materials with a low elastic modulus, the shear stiffness at the interface is reduced. The objective of this study was to investigate the effect of silicone rubber-sleeve mounted on shear studs on the shear stiffness of steel-concrete composite structures. Eighteen push-out tests were conducted to investigate the mechanical behavior of silicone rubber-sleeved shear stud groups (SRS-SSG). The dimension and arrangement of silicon rubber-sleeves (SRS) were taken into consideration. Test results showed that the shear strength of SRS-SSG was higher than that of a shear stud group (SSG), without SRS. For SRS-SSG with SRS heights of 50 mm, 100 mm, 150 mm, the shear strengths were improved by 13%, 20% and 9%, respectively, compared to the SSG alone. The shear strengths of SRS-SSG with the SRS thickness of 2 mm and 4 mm were almost the same. The shear stiffness of the SRS-SSG specimens with SRS heights of 50 mm, 100 mm and 150 mm were 77%, 67% and 66% of the SSG specimens, respectively. Test results of specimens SSG-1 and predicted values based on the three design specifications were compared. The nominal single stud shear strength of SSG-1 specimens was closest to that calculated by the Chinese Code for Design of Steel Structures (GB50017-2017). An equation is proposed to consider the effects of SRS for GB50017-2017, and the predicted values based on the proposed equation agree well with the tested results of SRS-SSG.

Behaviour evaluation of shear connection by means of shear-connection strips

  • Rovnak, Marian;Duricova, Antonia
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.247-263
    • /
    • 2004
  • Comparison of behaviour of shear connections by means of shear-connection strips (perfobond and comb-shaped strips) and headed studs under static and repeated loading, possible failure modes of concrete dowels and ways of the quantitative differentiation of some failure modes are described in the paper. The article presents a review of knowledge resulting from the analysis of shear-connection effects based on tests of perfobond and comb-shaped strips carried out in the laboratories of the Faculty of Civil Engineering of the Technical University of Kosice (TU of Kosice) in Slovakia and their comparison with results obtained by other authors.