• Title/Summary/Keyword: punching reinforcement

Search Result 81, Processing Time 0.186 seconds

Seismic Performance of Post Tensioned Flat Plate Structures according to Slab Bottom Reinforcement (하부 철근 유무에 따른 포스트 텐션 플랫 플레이트 골조의 내진성능 평가)

  • Han, Sang-Whan;HwangBo, Jin;Ryu, Jong-Hyuk;Park, Young-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned flat plate structures with or without slab bottom reinforcement. For this purpose, 3 and 9 story frames were designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study was an analytical model that is able to represent punching shear failure and fracture mechanism. The analytical results showed that the seismic performance of a post-tension flat plate is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in a PT flat plate frame, lateral strength and max drift capacity are significantly increased.

Evaluation of Shear Strength for Reinforced Flat Plates Embedded with GFRP Plates (매립형 GFRP 판으로 보강된 플랫 플레이트의 전단강도 평가)

  • Hwang, Seung Yeon;Kim, Min Sook;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • In this study, The purpose of this study is to experimentally investigate the shear behavior of reinforced flat plate embedded with GFRP(glass fiber reinforced polymer) plate with openings. The GFRP shear reinforcement is manufactured into a plate shape with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens. the parameters include the type of reinforcement and amount of the shear reinforcement., From the test, we analysed the crack, failure mode, Strain, load-displacement graph. a calculation of the shear strength of reinforced flat plate with GFRP plate based on the ACI 318-11 was compared with the test results. The results of the experiment indicate that GFRP plate is successfully applied as a shear reinforcement in the flat plate under punching shear.

Evaluation on Bearing Resistance of Transverse Members in Steel Strip Reinforcement using Pullout Tests and Theoretical Equations (인발시험과 이론식을 이용한 강재스트립 보강재에 설치된 지지부재의 지지저항 특성 평가)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results are compared with theoretical equations and then the failure mechanism of transverse members is evaluated. The bearing resistance stress(${\sigma}^{\prime}_b$) of transverse members, which is applied pullout force at 50mm displacement, is closed from punching shear failure to general shear failure. The behavior by increment of a number of transverse members became closer to general shear failure. The behavior of transverse members at maximum pullout force, which is closed to general shear failure, is indicated that it is unrelated to normal stress and a number of transverse members. However, if the allowable displacement of reinforced soil wall is considered, it is impossible to apply in design. The test results are compared with bearing resistance evaluations using Prandtl's plastic theory and cylindrical cavity expansion theory. The analysis results are indicated that the bearing resistance by pullout tests is closed to predicted result by Prandtl's plastic theory, which are located between general shear failure and punching shear failure.

  • PDF

Development and Application of Lattice Shear Reinforcement for Flat Plate Slab-column Connection (래티스를 이용한 철근콘크리트 무량판 구조의 슬래브-기둥 접합부 전단보강 공법 개발)

  • Kang, Su-Min;Park, Sung-Woo;Bang, Joong-Seok;Lee, Do-Bum;Kwon, Chul-Hwan;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.482-490
    • /
    • 2013
  • Although the flat plate system is an efficient structural type due to the simplicity of its construction, the low story height, and the various plan design, the slab-column connections are vulnerable to punching shear failure from gravity load and eccentric shear failure from lateral load. To prevent the structure collapse, various construction methods of slab-column connection reinforcement are developed but none of these satisfies all of structural performance, economics, and constructability. This paper presents the reinforcement of slab-column connection with lattice bars. The structural performance is confirmed with the interior slab-column connection tests subjected to cyclic loading, and the economic feasibility is demonstrated from the structural design under the same condition with lattice bars, stud rails, and stirrups.

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF

Bending Tests of Precast Deck with Loop Joints (루프 이음 프리캐스트 바닥판의 휨실험)

  • 류형근;장승필;김영진;주봉철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.518-523
    • /
    • 2003
  • In domestic composite bridges, it has been reported that most failure is occurred in deck and the type of failure was mainly punching shear failure. Therefore to increase a life of bridges and reduce maintenance costs, an improvement of a durability of slabs is needed. In these respects, precast deck can be very useful. In a composite bridge with precast decks, it is required to notice behavior of transverse joints between decks. In this paper, bending tests of precast deck with loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed and especially an interval of loop joint, diameter of loop and reinforcement were checked.

  • PDF

Seismic Design Provisions and Revisions to the Guides for RC Flat Plate Systems in the US (미국에서의 RC무량판 내진설계기준과 개정 방향)

  • Kang, Thomas H.K.;Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.25-36
    • /
    • 2008
  • Seismic design of reinforced concrete flat plate structures is often complicated as it deals with three dimensionality and continuous spans, and mostly material complexity and reinforcement variation. A great degree of uncertainty in such structural and material properties is thus inherent in the RC flat plate systems, and hinders simplification of the design process in terms of slab flexure, unbalanced moment transfer at a slab-column connection, and punching shear. For these reasons, there have been substantial changes and updates in building codes relating to flat plates and slab-column connections over a handful of decades. Also, for the same reason, some of codes never have been revised. As a consequence of nonsimultaneous development of each provision, it tends to confuse structural engineers when using a mixture of all different US code provisions. In this paper, in the step-by-step logical order, seismic design of the RC flat plate systems is re-organized and clarified to make it easier to apply. Furthermore, recent changes or proposed changes are introduced, and are explained as to how it will apply in practice.

A Study on the Processing of Long Fiber-Reinforced Composite Materials for Thermoforming On the Correlation Coefficient between Separation and Orientation (Thermoforming용 長纖維强化 複合材料의 成形工程에 관한 硏究 分離$\cdot$配向의 相關계수)

  • 이동기;김정락;김상필;이우일;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1106-1114
    • /
    • 1993
  • A composite material is composed of a reinforcement and a matrix, which determine mechanical characteristics of the molded part. There is no doubt that the properties of a composite material depend not only on the characteristics of the matrix but also on the structure of glass fiber mat and a fiber type of reinforcement. Therefore it is very important to study the composites of reinforcement and the matrix, and to control the fiber type in the process of molding of composite materials. In this study, the specimen was made of a glass fiber mat of 6-7mm thickness by scattering it in the air after cutting the glass fiber mat with needle punching makes change according to the type of needle and the number of times of stretching. First the sheet was made by means of a hot-press after accumulating a matrix and a glass fiber according to each mat structure of glass fiber. It was heated the manufactured sheet with the dry oven and molded it a secondary high temperature compression by a 30 ton oilhydraulic press. A definition of a correlation coefficient is showed up during this period and find it out with the relation of the fiber-matrix separation and the fiber orientation. We studied effects of the glass fiber mat structures on the correlation coefficient.

A Study on the Structural Performance of Slab-column Joint at Flat Plate Structure Using ECC (고인성 시멘트 복합재를 활용한 플랫플레이트 구조의 슬래브-기둥 접합부 구조성능 연구)

  • Choi, Kwang-Ho;Park, Byung-Chun;Choi, Sung-Woo;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • One of the important considerations in structural designing the flat plate system is ensuring the resistance to punching shear caused by axial loads and the ductile ability to follow horizontal deformation under earthquake. In this study, the ECC (Engineered Cementitious Composite) has been placed in the critical section zone of punching shear at slab-column joint to improve ductility and the advanced details of shear reinforced area nearby critical section zone has been developed using stud and steel fiber. The shear performance tests were performed on the specimens with parameters of fiber type mixed with ECC, stud and steel fiber set into the shear reinforced area in which the failure pattern, joint strength, displacement and strain of the specimen were compared and analyzed. The test results showed that the strength and ductility of specimens with ECC applied to joint were better than those of RC flat plate system. Also, the shear reinforcement effect of stud and the ductility improvement of steel fiber concrete were confirmed in the shear reinforcement area.

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.